18

Aperture Antennas

18.1 Open-Ended Waveguides

The aperture fields over an open-ended waveguide are not uniform over the aperture.
The standard assumption is that they are equal to the fields that would exist if the guide
were to be continued [1].

Fig. 18.1.1 shows a waveguide aperture of dimensions a > b. Putting the origin in
the middle of the aperture, we assume that the tangential aperture fields E;, H, are
equal to those of the TE;y mode. We have from Eq. (9.4.3):
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Fig. 18.1.1 Electric field over a waveguide aperture.
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E, (x")= Egcos (‘ITX ) , Hy(X')= —LEO cos <7TX ) (18.1.1)
a nTte a

where nr = n/K with K = \/1 - wi/w? = \/1 — (A/2a)?. Note that the boundary
conditions are satisfied at the left and right walls, X" = xa/2.

For larger apertures, such as a > 2A, we may set K ~ 1. For smaller apertures, such
as 0.5A < a < 2A, we will work with the generalized Huygens source condition (17.5.7).
The radiated fields are given by Eq. (17.5.5), with fx = 0:

. e Ikr .
Eg =Jk H Co fy(9, ¢)Sll’l¢
(18.1.2)

eIk
Eg = jk oy ¢ fy (0, p)cos P
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where f), (0, ¢) is the aperture Fourier transform of E) (x'), that is,

al/2 b/2 I
fy(6,¢) = Ey (X)X 0 gy’ dy’
—a/2 J-b/2
al? ’ b/2
X o o
= on cos (—) ek g’ J e gy
—-a/2 a -b/2

The y'-integration is the same as that for a uniform line aperture. For the X’-integration,
we use the definite integral:

arz ™™\ i 2a cos(kya/?2)
— Jkxx - =7 X
J’ia/2c0s< a )e dx T 1— (kya/TT)?2

It follows that:

2ab cos(1rvy) sin(1vy)
=Ey— 18.1.
fy(0.¢)=Eo— == “n? (18.1.3)
where vy = kya/21 and vy, = ky,b/21T, o1,
a . b . .
Vy = 2 sinfcos¢, vy, = 2 sin @ sin ¢ (18.1.4)

The obliquity factors can be chosen to be one of the three cases: (a) the PEC case, if
the aperture is terminated in a ground plane, (b) the ordinary Huygens source case, if it
is radiating into free space, or (c) the modified Huygens source case. Thus,

co | _ 1 1 1+ cos O 1 1+ Kcos0O (18.1.5)
cp | | cosO |’ 2| 1+cosO |’ 2| K+cos -
By normalizing all three cases to unity at & = 0°, we may combine them into:

ce(0)= %, ey (0)= Kl%“;{w (18.1.6)

where K is one of the three possible values:
A 2
K=0, K=1, K=-1- 1—(—) (18.1.7)
nte 2a

The normalized gains along the two principal planes are given as follows. For the xz- or
the H-plane, we set ¢p = 0°, which gives Eg = O:

|Ep(0) 2

cos(TTvy) 2
9 — Pt S S
gu (0) TP

a .
Y , Vx = —sin0 (18.1.8)

= len(0)|? A

And, for the yz- or E-plane, we set ¢ = 90°, which gives E¢ = 0:

, Yy = gsine (18.1.9)

) 2
sin(1Tvy,)
vy

_Ee(0)1* _ 2
ge(0)= Eolt lce(0) |
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The function cos (Ttvy) / (1 —4Vv?2) determines the essential properties of the H-plane
pattern. It is essentially a double-sinc function, as can be seen from the identity:

sin (‘rr(v + 1)) sin (TF(V - l))
cc;s(zv;) :% 2 = (18.1.10)
—4vi m(vit ) m(vx=5)

It can be evaluated with the help of the MATLAB function dsinc, with usage:

cos (7T X)

= dsinc(x); % the double-sinc function
1 - 4x2

= %[sinc(x +0.5) + sinc(x — 0.5) ]

The 3-dB width of the E-plane pattern is the same as for the uniform rectangular
aperture, A0, = 0.886 A/b. The dsinc function has the value 11/4 at vy = 1/2. Its 3-dB
point is at vy = 0.5945, its first null at vy = 1.5, and its first sidelobe at vy = 1.8894 and
has height 0.0708 or 23 dB down from the main lobe. It follows from vy = asin9/A
that the 3-dB width in angle space will be A0y = 2x0.5945A/a = 1.189 A/a. Thus, the
3-dB widths are in radians and in degrees:

AOyx =1.189 é = 68.12° é, A0, =0.886 é = 50.76° é (18.1.11)
a a b b

Example 18.1.1: Fig. 18.1.2 shows the H- and E-plane patterns for a WR90 waveguide operating
at 10 GHz, so that A = 3 cm. The guide dimensions are a = 2.282 cm, b = 1.016 cm. The
typical MATLAB code for generating these graphs was:

= 2.282; b =1.016; 1a = 3;
= (0:0.5:90) * pi/180;

a/la * sin(th);
b/1a * sin(th);

K = sqrt(1 - (la/(2*a))A2); % alternatively, K = 0, or, K = 1

1 + K*cos(th))/(K+1);
K + cos(th))/(K+1);

% normalized obliquity factors

gH = abs(cH .* dsinc(vx).A2); % uses dsinc

gE = abs(cE .* sinc(vy)).A2; % uses sinc from SP toolbox
figure; dbp(th,gH,45,12);
figure; dbp(th,gE,45,12);

dB gain polar plot

The three choices of obliquity factors have been plotted for comparison. We note that the
Huygens source cases, K = 1 and K = n/ng, differ very slightly. The H-plane pattern
vanishes at € = 90° in the PEC case (K = 0), but not in the Huygens source cases.

The gain computed from Eq. (18.1.13)is G = 2.62 or 4.19 dB, and computed from Eq. (18.1.14),

G =2.67 or 4.28 dB, where K = n/nm = 0.75 and (K + 1)2/4K = 1.02.

This waveguide is not a high-gain antenna. Increasing the dimensions a, b is impractical
and also would allow the propagation of higher modes, making it very difficult to restrict
operation to the TE;(, mode. [}
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H-Plane Pattern
o

E-Plane Pattern
o

Fig. 18.1.2 Solid line has K = n/ng, dashed, K = 1, and dash-dotted, K = 0.

Next, we derive an expression for the directivity and gain of the waveguide aperture.
The maximum intensity is obtained at @ = 0°. Because cg (0) = c¢ (0), we have:

Umax: |E(0 ¢)|2

1 1 4(ab)?
2AZn 59(0)|fy(0 ¢)|2 2A2n C9(0)|EO‘2 2
The total power transmitted through the aperture and radiated away is the power
propagated down the waveguide given by Eq. (9.7.4), that is,

1 P
Praa = ——|Eol?ab 18.1.12
rad 4nTE| 0| ( )

It follows that the gain/directivity of the aperture will be:

Umax _ ﬂi( p) 1TE nTE 2(0)

G=4
TrPrad AZ T2

For the PEC and ordinary Huygens cases, cg (0) = 1. Assuming nre ~ n, we have:

G- ‘;—T;i( b)*OSl—(ab) (18.1.13)

Thus, the effective area of the waveguide aperture is A = 0.81 (ab) and the aper-
ture efficiency e = 0.81. For the modified Huygens case, we have for the obliquity factor
co(0)= (K + 1) /2 with K = n/nrg. It follows that [1188]:

41 8 (K+1)2
G=— —(ab) ———— 18.1.14
N2 702 (ab) 1K ( )
For waveguides larger than about a wavelength, the directivity factor (K + 1)2/4K
is practically equal to unity, and the directivity is accurately given by Eq. (18.1.13). The
table below shows some typical values of K and the directivity factor (operation in the
TE;o mode requires 0.5A < a < A):
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alA| K | (K+1)?/(4K)

0.6 | 0.5528 1.0905
0.8 | 0.7806 1.0154
1.0 | 0.8660 1.0052
1.5 | 0.9428 1.0009
2.0 | 0.9682 1.0003

The gain-beamwidth product is from Egs. (18.1.11) and (18.1.13), p = GAOx A0, =
477(0.81) (0.886) (1.189) = 10.723 rad?® = 35202 deg®. Thus, another instance of the
general formula (15.3.14) is (with the angles given in radians and in degrees):

10.723 35202

C = A0,40, = 209463

(18.1.15)

18.2 Horn Antennas

The only practical way to increase the directivity of a waveguide is to flare out its ends
into a horn. Fig. 18.2.1 shows three types of horns: The H-plane sectoral horn in which
the long side of the waveguide (the a-side) is flared, the F-plane sectoral horn in which
the short side is flared, and the pyramidal horn in which both sides are flared.

=, = =T

H-plane sectoral horn E-plane sectoral horn pyramidal horn

Fig. 18.2.1 H-plane, E-plane, and pyramidal horns.

The pyramidal horn is the most widely used antenna for feeding large microwave
dish antennas and for calibrating them. The sectoral horns may be considered as special
limits of the pyramidal horn. We will discuss only the pyramidal case.

Fig. 18.2.2 shows the geometry in more detail. The two lower figures are the cross-
sectional views along the xz- and yz-planes. It follows from the geometry that the
various lengths and flare angles are given by:

A B
Ra= R R,=—-—"—R
a A-a Ay b B—-b B
2 2
L§:R$+AT, Lf,:Rf,+BZ
tanx = tanf§ = B (82D
T 2R, " 2Ry
A? B?
Ag = Ap = ——
78R, b~ 8R,
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The quantities R4 and Rp represent the perpendicular distances from the plane of
the waveguide opening to the plane of the horn. Therefore, they must be equal, R4 = Rp.
Given the horn sides A, B and the common length R 4, Egs. (18.2.1) allow the calculation
of all the relevant geometrical quantities required for the construction of the horn.

The lengths A, and Ay, represent the maximum deviation of the radial distance from
the plane of the horn. The expressions given in Eq. (18.2.1) are approximations obtained
when R; > A and Rp > B. Indeed, using the small-x expansion,

Vitx=1=+

N[>

we have two possible ways to approximate Ag:

/ A2 / A? A2

_ _ 2 — ~

Ag=Ls—Rg = Ra+4 —Rs =R, 1+4§_Ra_8Ra
A?

(18.2.2)

2 A?
=Lg— L2 =5 =Lg—Las|1— ~
a 4T g a ~a 412 ~ 8L,

o

Fig. 18.2.2 The geometry of the pyramidal horn requires R4 = Rp.

The two expressions are equal to within the assumed approximation order. The
length A, is the maximum deviation of the radial distance at the edge of the horn plane,
thatis, at x = = A/2. For any other distance x along the A-side of the horn, and distance
y along the B-side, the deviations will be:

2 2

X
Ag(X)= SR Ap(y) = 2)1/71, (18.2.3)
a
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The quantities kA, (x) and kA (y) are the relative phase differences at the point
(x,y) on the aperture of the horn relative to the center of the aperture. To account for
these phase differences, the aperture electric field is assumed to have the form:

E, (x,y) = Eq cos (%) e kBa() =ik () o (18.2.4)

Ey(x,y)= Egcos <%) e Jkx*12Ra o=jky?/2Rp (18.2.5)

We note that at the connecting end of the waveguide the electric field is E) (x,y) =
Eocos(mrx/a) and changes gradually into the form of Eq. (18.2.5) at the horn end.

Because the aperture sides A, B are assumed to be large compared to A, the Huy-
gens source assumption is fairly accurate for the tangential aperture magnetic field,
Hx(x,y)= —Ey(x,y)/n, so that:

1 i )

Hy(x,y)= “n Eo cos (%) e Jkx*/2Ra o=jky* /2Ry (18.2.6)

The quantities kA,, kA are the maximum phase deviations in radians. Therefore,
Ag/A and Ap /A will be the maximum deviations in cycles. We define:

¢ _Aa_ A A, B
a= b7 N T 8AR,

A 8AR,’

(18.2.7)

It turns out that the optimum values of these parameters that result into the highest
directivity are approximately: S; = 3/8 and S, = 1/4. We will use these values later in
the design of optimum horns. For the purpose of deriving convenient expressions for
the radiation patterns of the horn, we define the related quantities:

A2 , B
=4S, =
AR, b == 53R,

02 =48, = (18.2.8)

The near-optimum values of these constants are 0, = /45, = /4(3/8) = 1.2247
and 0p = +/4S, = /4(1/4) = 1. These are used very widely, but they are not quite the
true optimum values, which are o; = 1.2593 and 0} = 1.0246.

Replacing k = 271/A and 2AR, = A?/02 and 2AR}, = B?/0} in Eq. (18.2.5), we may
rewrite the aperture fields in the form: For —A/2 <x < A/2and —-B/2 <y < B/2,

E,(x,y) = Eocos (%) oI (TI2) 032X/ A)? 5-j(m0/2) 0F (27/B)?
(18.2.9)

Hy(x,y) = *lEo cos (E) oI (T/2) 03 (2x/A)? 5—j(1T/2) 0 (2y/B)?
n A

18.3 Horn Radiation Fields

As in the case of the open-ended waveguide, the aperture Fourier transform of the elec-
tric field has only a y-component given by:
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A/2 (B2 ) )
fy(0,d)= Ey (x,y) elkxtiky dx dy
-A/2 J-B/2
A/2 B/2
™\ : . )
= EOJ Ccos <7) ekaXeﬂ(TT/Z)U"ZI(2></A)2 dx - J ejkyye—J(ﬂ/Z)g'g(Zy/B)z d)/
—A/2 A -B/2

The above integrals can be expressed in terms of the following diffraction-like inte-
grals, whose properties are discussed in Appendix F:

1
Fo(v,0) = L] ITVE o-i(T/2) 0% dE

. (18.3.1)
Fi(v,0) = ,[—1 cos (%E) eITVE oI (M2 0*E g
The function Fy (v, o) can be expressed as:
1 ... o
Fo(v,0)= — (M2 (v*/0?) [F (Z + cr) -F (K - O’)] (18.3.2)
o o o

where F(x)= C(x)—jS(x) is the standard Fresnel integral, discussed in Appendix F.
Then, the function F; (v, 0) can be expressed in terms of Fy (v, 0):

[Fo(v+0.5,0)+Fy(v—0.50)] (18.3.3)

N | =

Fl(V,O')=

The functions Fy(v,0) and F;(v,s) can be evaluated numerically for any vector
of values v and any positive scalar o (including o = 0) using the MATLAB function
diffint, which is further discussed in Appendix F and has usage:

FO = diffint(v,sigma,0);
F1 diffint(v,sigma,l);

% evaluates the function Fg (v, o)

% evaluates the function Fj (v, 0)

In addition to diffint, the following MATLAB functions, to be discussed later, fa-
cilitate working with horn antennas:

hband % calculate 3-dB bandedges

heff % calculate aperture efficiency
hgain % calculate H- and E-plane gains
hopt % optimum horn design

hsigma % calculate optimum values of og, 0

Next, we express the radiation patterns in terms of the functions (18.3.1). Defining
the normalized wavenumbers vy = kxA/27T and v, = ky,B/271T, we have:

Vy = %sin@cosd), vy = gsinasingb (18.3.4)

Changing variables to & = 2y/B, the y-integral can written in terms of Fy (v, 0):
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Bre ikyy ,—j(1r/2) 0} (2y/B)? B (! iTtvy € ,—j(1r/2)op E2 B
B/ZeJy)’eJ b (2y dy:E 1eJ vs o) b dEZEFO(V)MO-b)

Similarly, changing variables to & = 2x/A, we find for the x-integral:

Ar2 X
J COS( )e/kxxe (T2 0325140 gy
—A/2 A

A (! , , 2 A
-5 1C°S(%g)e""vge’”"/”““z dE = F1(vy, 00)

It follows that the Fourier transform f), (6, ¢») will be:

AB
fy(0,d)= EOT Fi(vx,0q) Fo(vy, 0p) (18.3.5)

The open-ended waveguide and the sectoral horns can be thought of as limiting cases
of Eq. (18.3.5), as follows:

1. open-ended waveguide: 0,=0, A=a, 0p,=0, B=h.
2. H-plane sectoral horn: 04,4>0, A>a, op,=0, B=hb.
3. E-plane sectoral horn: 04a=0, A=a, op>0, B>bhb.

In these cases, the F-factors with o = 0 can be replaced by the following simplified
forms, which follow from equations (F.12) and (F.17) of Appendix F:
sin(1Tv 4
Fo(vy,0)=2 ST gy= & cos(mv) (18.3.6)
V), ™ 1-—4vx
The radiation fields are obtained from Eq. (17.5.5), with obliquity factors cg (0)=
cp (0)= (1 + cos 6)/2. Replacing k = 271/A, we have:

Jk
Eo=j%— 7 C9(9)fy(9 ¢)sin¢p

(18.3.7)

eJkr
Ep=j—~— A7 c$(0) [y (0,¢)cosP
or, explicitly,
e J’“E Aj(l+cos€
I By 2

ekr  AB (1 +cosf
Bp=ify B0y (T

Eo = )sin¢F1(vx,cra)Fo(vy,0b)

(18.3.8)
) cos ¢ F1 (Vx, 04) Fo(vy, op)

Horn Radiation Patterns
The radiation intensity is U (0, ¢) = r?>(|Eg|?> + |E¢|?) /2n, so that:

U(o,d)= |Eol?(AB)2 ¢3(0) | Fi (vx, 0a) Fo(vy, ) | (18.3.9)

32n 2\2
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Assuming that the maximum intensity is towards the forward direction, that is, at
Vx = Vy = 0, we have:

Umax = 320 2\2 |Eo|?(AB)? | F1 (0, 04) Fo(0,0p) |° (18.3.10)

The direction of maximum gain is not necessarily in the forward direction, but it
may be nearby. This happens typically when o}, > 1.54. Most designs use the optimum
value op = 1, which does have a maximum in the forward direction. With these caveats
in mind, we define the normalized gain:

A

U(o,¢) F1(vx,0q) Fo(vy, 0p)
(0,¢)= = ’ (18.3.11)
90 P1= " 2 F1(0,04) Fo(0,0p)
Similarly, the H- and E-plane gains corresponding to ¢ = 0° and ¢ = 90° are:
1+cos0|? Fl(vx,Ua)‘ o A
gu(0)= ‘ ‘ F10,00) =g(0,0°, V= Asm@
) ) (18.3.12)
1 F , B
gE(Q):‘ +COS€‘ o(vy (Th)‘ — 3(0,90°), vy = Zsno

Fo (0, 0p)

The normalizing values F; (0, 0,) and F((0,0p) are obtained from Egs. (F.11) and
(F.15) of Appendix F. They are given in terms of the Fresnel function F (x) = C (x) —jS (x)
as follows:

2

1
|F1(0,00)1* = —
(o]

1 1
F(zaa“’a)‘F(E“’a)

(18.3.13)
|Fo(0,0p) % =
These have the limiting values for o; = 0 and g} = O:
2 _ 16 2
[F1(0,0)]° = p—p |Fo(0,0)]* =4 (18.3.14)

The mainlobe/sidelobe characteristics of the gain functions gy (6) and gg(0) de
pend essentially on the two functions:

Fy(vy, 04q)
F1(0,04)

Fo(vy, 0p)

18.3.15
Fo(0, 0p) (18.3.15)

f1(vx,04q) = fo(vy,04) = ‘

Fig. 18.3.1 shows these functions for the following values of the o-parameters: o, =
[0, 1.2593, 1.37, 1.4749, 1.54] and o} = [0, 0.7375, 1.0246, 1.37, 1.54].

The values 0, = 1.2593 and 0 = 1.0246 are the optimum values that maximize
the horn directivity (they are close to the commonly used values of o, = /1.5 = 1.2247
and op = 1.)

The values 0, = 1.4749 and 0 = 0,4/2 = 0.7375 are the optimum values that
achieve the highest directivity for a waveguide and horn that have the same aspect ratio
of b/a=B/A=1/2.
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filv, 0) = |Fi(v,, o) I/1F;(0, o) fovy, o) = | Fo(vy, 0)1/1F((0, o)
g, =0.00 a, = 0.00
1 — 0,=126() || 1 SIREN — 0,=0.74
---0,=137 il — 0, =1.02(s)
3dB — 0,=147(0) ' N 3dB ---0,=137
1 -~ o,=154 1 e - o,=154
2 2 N N
\/— e 0 3-dB bandedges \/— NN * 3-dB bandedges
% 1 3 4 %

Sl

Fig. 18.3.1 Gain functions for different o-parameters.

For o, = op = 0, the functions reduce to the sinc and double-sinc functions of
Eq. (18.3.6). The value o = 1.37 was chosen because the function fy (vy, 0p) develops
a plateau at the 3-dB level, making the definition of the 3-dB width ambiguous.

The value 0}, = 1.54 was chosen because [, (vy, 0p) exhibits a secondary maximum
away from v, = 0. This maximum becomes stronger as 0 is increased further.

The functions f; (v, o) and fo (v, o) can be evaluated for any vector of v-values and
any o with the help of the function diffint. For example, the following code computes
them over the interval 0 < v < 4 for the optimum values 0, = 1.2593 and o = 1.0246,
and also determines the 3-dB bandedges with the help of the function hband:

sa = 1.2593; sb = 1.0249;
v = 0:0.01:4;

fl = abs(diffint(v,sa,1l) / diffint(0,sa,1));
f0 = abs(diffint(v,sb,0) / diffint(0,sb,0));

va = hband(sa,1);
vb = hband(sb,0);

% 3-dB bandedge for H-plane pattern
% 3-dB bandedge for E-plane pattern

The mainlobes become wider as o, and 0} increase. The 3-dB bandedges corre-
sponding to the optimum os are found from hband to be v; = 0.6928 and v, = 0.4737,
and are shown on the graphs.

The 3-dB width in angle € can be determined from vy = (A/A)sin 0, which gives
approximately A9, = (2v,) (A/A)—the approximation being good for A > 2A. Thus,
in radians and in degrees, we obtain the H-plane and E-plane optimum 3-dB widths:

A A A A

AB, =1.3856 — =79.39° —, A0, =0.9474 — = 54.28° —

A A B B (18.3.16)

The indicated angles must be replaced by 77.90° and 53.88° if the near-optimum o's
are used instead, that is, o, = 1.2247 and o} = 1.

Because of the 3-dB plateau of f, (vy, 0p) at or near g = 1.37, the function hband
defines the bandedge to be in the middle of the plateau. At 0, = 1.37, the computed
bandedge is v, = 0.9860, and is shown in Fig. 18.3.1.
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The 3-dB bandedges for the parameters o, = 1.4749 and 0 = 0.7375 correspond-
ing to aspect ratio of 1/2 are v,; = 0.8402 (shown on the left graph) and v, = 0.4499.

The MATLAB function hgain computes the gains gy () and gg (0) at N + 1 equally
spaced angles over the interval [0, 77/2], given the horn dimensions A, B and the pa-
rameters 0,, 0p. It has usage:

[gh,ge,th] = hgain(N,A,B,sa,sbh);
[gh,ge,th] = hgain(N,A,B);

% note: th = Tinspace(0, pi/2, N+1)
% uses optimum values og = 1.2593, 0} = 1.0246

Example 18.3.1: Fig. 18.3.2 shows the H- and E-plane gains of a horn with sides A = 4A and
B = 3A and for the optimum values of the o-parameters. The 3-dB angle widths were
computed from Eq. (18.3.16) to be: A0, = 19.85° and A0, = 18.09°.

The graphs show also a 3-dB gain circle as it intersects the gain curves at the 3-dB angles,
which are AQ,/2 and AOQy/2.

H-plane gain
0

E-plane gain
) 0 0°

[c) 0

Fig. 18.3.2 H- and E-plane gains for A = 4A, B = 3A, and 0, = 1.2593, 03, = 1.0246.
The essential MATLAB code for generating the left graph was:
A =4; B=3; N=200;

[gh,ge,th] = hgain(N,A,B); % calculate gains

Dtha = 79.39/A;

dbp(th,gh);
addbwp (Dtha) ;
addcirc(3);

% calculate width A0,y

% make polar plot in dB
% add the 3-dB widths
% add a 3-dB gain circle

We will see later that the gain of this hornis G = 18.68 dB and that it can fit on a waveguide
with sides a = A and b = 0.35A, with an axial length of R4 = Rg = 3.78A. O

18.4 Horn Directivity

The radiated power P;,q is obtained by integrating the Poynting vector of the aperture
fields over the horn area. The quadratic phase factors in Eq. (18.2.9) have no effect on
this calculation, the result being the same as in the case of a waveguide. Thus,
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1
Prag = an |Eo|? (AB) (18.4.1)

It follows that the horn directivity will be:

Umax

G =41
Prad

4T 1 4Tt
=2 (AB) g | F1(0,04) Fo(0,0p) | = e 2 AB (18.4.2)

where we defined the aperture efficiency e by:

1
¢(a,0)= ¢ |F1(0,0%) Fo(0,0p) |2 (18.4.3)

Using the MATLAB function diffint, we may compute e for any values of o, 0p.
In particular, we find for the optimum values o, = 1.2593 and 03 = 1.0246:

0a=12593 = |F1(0,04)|° =|diffint(0,04,1)|° = 1.2520

2 s 2 (18.4.4)
op =1.0246 = |Fy(0,0p) |  =|diffint(0,05,0)|" = 3.1282
This leads to the aperture efficiency:
1

e= 3 (1.2520) (3.1282) =~ 0.49 (18.4.5)

and to the optimum horn directivity:
41T . . -
G =0.49 22 AB (optimum horn directivity) (18.4.6)

If we use the near-optimum values of ; = +/1.5 and 0, = 1, the calculated efficiency
becomes e = 0.51. It may seem strange that the efficiency is larger for the non-optimum
04, 0p. We will see in the next section that “optimum” does not mean maximizing the
efficiency, but rather maximizing the gain given the geometrical constraints of the horn.

The gain-beamwidth product is from Egs. (18.3.16) and (18.4.6), p = GAO, A0y =
477(0.49) (1.3856) (0.9474) = 8.083 rad? = 26535 deg®. Thus, in radians and in de-
grees, we have another instance of (15.3.14):

_ 8.083 26535
A0, A0,  AOSA0Y

G (18.4.7)

The gain of the H-plane sectoral horn is obtained by setting o = 0, which gives
Fy(0,0)= 2. Similarly, the E-plane horn is obtained by setting o, = 0, with F;(0,0) =
4/1r. Thus, we have:

27T

- F(AB)|F1(0,(Ta)|2

4 1
Gy = TZ(AB)g |F1(0,04) |24
i} |16 g (18.4.8)
™ 2 2
G = 55 (AB) ¢~ |[Fo(0,00) | = 5 (AB) [ Fo (0, 00) |

The corresponding aperture efficiencies follow by dividing Eqgs. (18.4.8) by 4TTAB/A?:
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en(7a)= e(04,0)= 3 |F1(0,00) |*, ex(ap)=e(0,00)= %|Fo<o,ob> |2

In the limit o, = 0p = 0, we find e = 0.81, which agrees with Eq. (18.1.13) of the
open waveguide case. The MATLAB function heff calculates the aperture efficiency
e (o4, 0p) for any values of 0,4, 0. It has usage:

e = heff(sa,sh);

% horn antenna efficiency

Next, we discuss the conditions for optimum directivity. In constructing a horn an-
tenna, we have the constraints of (a) keeping the dimensions a, b of the feeding waveg-
uide small enough so that only the TE}y mode is excited, and (b) maintaining the equal-
ity of the axial lengths R4 = Rp between the waveguide and horn planes, as shown in
Fig. 18.2.2. Using Eqgs. (18.2.1) and (18.2.8), we have:

A—-a A(A-a) B-b B(B-b)
Ry = R, = , Rp = Ry = 18.4.9
AT A YT g BEZ 7B "PT 2aol ( )
Then, the geometrical constraint R4 = Rp implies;
A(A-a) B(B-b) o2 B(B-b)
= — = 18.4.10
20073 2007, 7 oz AA-a ( )

We wish to maximize the gain while respecting the geometry of the horn. For a fixed
axial distance R4 = Rp, we wish to determine the optimum dimensions A, B that will
maximize the gain.

The lengths R 4, Rp are related to the radial lengths R, Ry by Eq. (18.4.9). For A > a,
the lengths R, and R4 are practically equal, and similarly for R, and Rp. Therefore, an
almost equivalent (but more convenient) problem is to find A, B that maximize the gain
for fixed values of the radial distances R, Rp.

Because of the relationships A = 04v/2AR,; and B = 0p+/2AR), this problem is
equivalent to finding the optimum values of o, and 0} that will maximize the gain.
Replacing A, B in Eq. (18.4.2), we rewrite G in the form:

4 1
G=7 (Um/z)\Ra) (0’;,«/22\Rb> SIF1 (0,00 Fo 0,00 |7, o,

G = LI;\“Rb fa(Ta)fo(ob) (18.4.11)

where we defined the directivity functions:
fa(0a)= 0a|F1(0,00) |*, fo(op)=0p|Fo(0,0%)|° (18.4.12)

These functions are plotted on the left graph of Fig. 18.4.1. Their maxima occur at
04 = 1.2593 and 0 = 1.0246. As we mentioned before, these values are sometimes
approximated by 0, = +/1.5 = 1.2244 and o}, = 1.

An alternative class of directivity functions can be derived by constructing a horn
whose aperture has the same aspect ratio as the waveguide, that is,
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Directivity Functions Function £,(0)

r=2/5, 6, = 15127
. — fo(o) —-- r=4/9, 0, = 1.4982
3l f ---fy(o) 6 — r=1/2, 0, = 1.4749
g N -- r=1, o,=11079
L.
2 v 4r S e
.
i/ o, RN of A .
% 1 2 3 % 1 2 3
c c
Fig. 18.4.1 Directivity functions.
B b
—=—=r (18.4.13)
A a

The aspect ratio of a typical waveguide is of the order of ¥ = 0.5, which ensures the
largest operating bandwidth in the TE;() mode and the largest power transmitted.

It follows from Eq. (18.4.13) that (18.4.10) will be satisfied provided o/ 02 = r?, or
Op = ro,. The directivity (18.4.11) becomes:

G- LI;“Rl’fr(oa) (18.4.14)
where we defined the function:
fr(0a) = fa(Ta) fo (roa) = r 02| F1 (0,04)Fo (0, 7o) | (18.4.15)

This function has a maximum, which depends on the aspect ratio r. The right graph
of Fig. 18.4.1 shows f; (0) and its maxima for various values of r. The aspect ratio
r = 1/2 is used in many standard guides, r = 4/9 is used in the WR-90 waveguide, and
r = 2/5 in the WR-42.

The MATLAB function hsigma computes the optimum o, and 0} = ro, for a given
aspect ratio r. It has usage:

[sa,sb] = hsigma(r);

% optimum o-parameters

With input ¥ = 0, it outputs the separate optimal values o, = 1.2593 and 0 =
1.0246. For r = 0.5, it gives 04 = 1.4749 and 0}, = 0,4/2 = 0.7375, with corresponding
aperture efficiency e = 0.4743.

18.5 Horn Design

The design problem for a horn antenna is to determine the sides A, B that will achieve a
given gain G and will also fit geometrically with a given waveguide of sides a, b, satisfying
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the condition R4 = Rp. The two design equations for A, B are then Eqgs. (18.4.2) and
(18.4.10):

_pdm 9 _ B(B-b)
G=es7 4B, b= o (18.5.1)

The design of the constant aspect ratio case is straightforward. Because o}, = roy,
the second condition is already satisfied. Then, the first condition can be solved for A,
from which one obtains B=rA and Ry = A(A —a)/ (22\0’3):

41T G
G—eﬁA(rA) > |A=A Irter

(18.5.2)

In Eq. (18.5.2), the aperture efficiency e must be calculated from Eq. (18.4.3) with the
help of the MATLAB function heff.

For unequal aspect ratios and arbitrary o,, 0, one must solve the system of equa-
tions (18.5.1) for the two unknowns A, B. To avoid negative solutions for B, the second
equation in (18.5.1) can be solved for B in terms of A, a, b, thus replacing the above
system with:

2 2
fi(A,B) =B - g+ b—+U—ZA(A—a) =0
¢ o (18.5.3)
B A2G
f2(A,B)=AB—H—O

This system can be solved iteratively using Newton’s method, which amounts to
starting with some initial values A, B and keep replacing them with the corrected values
A + AA and B + AB, where the corrections are computed from:

AA 4| h oaf1 0sfr
[AB]:’MI[fZ]' where M:[aAfz an2:|

The matrix M is given by:

_(j, 2A —a 1 _Uif,ZAfa 1
M = o3 (2B —b - 2f1) ~ 02 2B-b
B A B A

where we replaced the 2f; term by zero (this is approximately correct near convergence.)

Good initial values are obtained by assuming that A, B will be much larger than a, b and
therefore, we write Eq. (18.5.1) approximately in the form:
41T o2 B2

G =e— AB, — = 18.5.4

A2 o: A2 ( )

This system can be solved easily, giving the initial values:

Ag=A | C Ta p 5\ |G Ov (18.5.5)
4t1Te Op 41TC 04

Note that these are the same solutions as in the constant-r case. The algorithm
converges extremely fast, requiring about 3-5 iterations. It has been implemented by
the MATLAB function hopt with usage:
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[A,B,R,err] = hopt(G,a,b,sa,sb);
[A,B,R,err] = hopt(G,a,b,sa,sb,N);
[A,B,R,err] = hopt(G,a,b,sa,sb,0);

% optimum horn antenna design
% N is the maximum number of iterations

% outputs initial values only

where G is the desired gain in dB, a,b are the waveguide dimensions. The output R
is the common axial length R = R4 = Rp. All lengths are given in units of A. If the
parameters 0, Op are omitted, their optimum values are used. The quantity err is the
approximation error, and N, the maximum number of iterations (default is 10.)

Example 18.5.1: Design a horn antenna with gain 18.68 dB and waveguide sides of a = A and
b = 0.35A. The following call to hopt,

[A,B,R,err] = hopt(18.68, 1, 0.35);

yields the values (in units of A): A = 4, B = 2.9987, R = 3.7834, and err = 3.7 x 10~!1,
These are the same as in Example 18.3.1. m|

Example 18.5.2: Design a horn antenna operating at 10 GHz and fed by a WR-90 waveguide
with sides a = 2.286 cm and b = 1.016 cm. The required gain is 23 dB (G = 200).

Solution: The wavelengthis A = 3 cm. We carry out two designs, the first one using the optimum
values o, = 1.2593, 0 = 1.0246, and the second using the aspect ratio of the WR-90
waveguide, which is ¥ = b/a = 4/9, and corresponds to 0, = 1.4982 and 0} = 0.6659.
The following MATLAB code calculates the horn sides for the two designs and plots the
E-plane patterns:

la = 3; a=2.286; b = 1.016; % lengths in cm
G = 200; Gdb = 10*10g10(G); % Gg4p = 23.0103 dB

[sal,sbl] = hsigma(0);
[A1,B1,R1] = hopt(Gdb, a/la, b/la, sal, sbl);

% optimum o-parameters
% A1, B1, Ry in units of A

[sa2,sb2] = hsigma(b/a); % optimum ¢’'s for ¥ = b/a
[A2,B2,R2] = hopt(Gdb, a/la, b/la, sa2, sb2,0); 9% output initial values

N = 200; %201 anglesin 0 < 0 < 11/2

[ghl,gel,th] = hgain(N,Al,Bl,sal,sbhl);
[gh2,ge2,th] = hgain(N,A2,B2,sa2,sh2);

% calculate gains

figure; dbp(th,ghl); figure; dbp(th,gel);
figure; dbp(th,gh2); figure; dbp(th,ge2);

% polar plots in dB

Al = Al*1a; Bl = Bl*la; Rl = R1l*1a; % lengths in cm
A2 = A2*1a; B2 = B2*la; R2 = R2*1a;

The designed sides and axial lengths are in the two cases:

A; =19.2383 cm, B; =15.2093 cm, R; =34.2740 cm
Ap =26.1457 cm, B =11.6203 cm, R, = 46.3215 cm

The H- and E-plane patterns are plotted in Fig. 18.5.1. The first design (top graphs) has
slightly wider 3-dB width in the H-plane because its A-side is shorter than that of the
second design. But, its E-plane 3-dB width is narrower because its B-side is longer.
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The initial values given in Eq. (18.5.5) can be used to give an alternative, albeit approximate,
solution obtained purely algebraically: Compute Ag, By, then revise the value of By by
recomputing it from the first of Eq. (18.5.3), so that the geometric constraint R4 = Rp is
met, and then recompute the gain, which will be slightly different than the required one.

For example, using the optimum values 0, = 1.2593 and 0}, = 1.0246, we find from
(18.5.5): Ag = 18.9644, By = 15.4289 cm, and R4 = 33.2401 cm. Then, we recalculate By
to be By = 13.9453 cm, and obtain the new gain G = 180.77, or, 22.57 dB. [}

H-plane gain E-plane gain

) )
30° 30° 30° 30°

60° - | 60° 60° 5 60°

180° 180°
H-plane gain E-plane gain
30° 0 30° 30° o

180° 180°

Fig. 18.5.1 H- and E-plane patterns.

18.6 Microstrip Antennas

A microstrip antenna is a metallic patch on top of a dielectric substrate that sits on
top of a ground plane. Fig. 18.6.1 depicts a rectangular microstrip antenna fed by a
microstrip line. It can also be fed by a coaxial line, with its inner and outer conductors
connected to the patch and ground plane, respectively.

In this section, we consider only rectangular patches and discuss simple aperture
models for calculating the radiation patterns of the antenna. Further details and appli-
cations of microstrip antennas may be found in [1208-1215].
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Fig. 18.6.1 Microstrip antenna and E-field pattern in substrate.

The height h of the substrate is typically of a fraction of a wavelength, such as
h = 0.05A, and the length L is of the order of 0.5A. The structure radiates from the
fringing fields that are exposed above the substrate at the edges of the patch.

In the so-called cavity model, the patch acts as resonant cavity with an electric field
perpendicular to the patch, that is, along the z-direction. The magnetic field has van-
ishing tangential components at the four edges of the patch. The fields of the lowest
resonant mode (assuming L > W) are given by:

E,(x) = —Ej sin(?) —gsxs%
for W W (18.6.1)
Hy(x):fHocos<?> -5 sys?

where Hy = —jEp/n. We have placed the origin at the middle of the patch (note that
E, (x) is equivalent to Eycos(mrx/L) for0 < x < L.)

It can be verified that Egs. (18.6.1) satisfy Maxwell’s equations and the boundary
conditions, that is, Hy (x)= 0 at x = +L/2, provided the resonant frequency is:

_ e —0s5¢ = o
w—L > f O.SL O'SL\/ET

where ¢ = co/\/€, N = No/\/€, and €, is the relative permittivity of the dielectric
substrate. It follows that the resonant microstrip length will be half-wavelength:

(18.6.2)

A
N
Fig. 18.6.2 shows two simple models for calculating the radiation patterns of the
microstrip antenna. The model on the left assumes that the fringing fields extend over
a small distance a around the patch sides and can be replaced with the fields E, that
are tangential to the substrate surface [1210]. The four extended edge areas around the
patch serve as the effective radiating apertures.

L=0.5 (18.6.3)
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Fig. 18.6.2 Aperture models for microstrip antenna.

The model on the right assumes that the substrate is truncated beyond the extent of
the patch [1209]. The four dielectric substrate walls serve now as the radiating apertures.
The only tangential aperture field on these walls is E; = ZE,, because the tangential
magnetic fields vanish by the boundary conditions.

For both models, the ground plane can be eliminated using image theory, resulting in
doubling the aperture magnetic currents, that is, J,,,; = —20 X E;. The radiation patterns
are then determined from J,.

For the first model, the effective tangential fields can be expressed in terms of the
field E, by the relationship: aF,; = hE;. This follows by requiring the vanishing of the
line integrals of E around the loops labeled ABCD in the lower left of Fig. 18.6.2. Because
E, = +Fy at x = £L/2, we obtain from the left and right such contours:

hE,
§ E-dl=—-Eyh+Eza=0, i: E-dl=Foph—-E;a=0 = E;=—

ABCD ABCD a

In obtaining these, we assumed that the electric field is nonzero only along the sides
AD and AB. A similar argument for the sides 2 & 4 shows that E; = +hE,(x)/a. The
directions of E, at the four sides are as shown in the figure. Thus, we have:

for sides 1 & 3 : Ea=§<%
(18.6.4)
hE hE
for sides 2 & 4 : E; =+y 2(X) =1A—Osin(ﬂ>
a L
The outward normal to the aperture plane is i = Z for all four sides. Therefore, the
surface magnetic currents J,,s = —20 X E; become:
2hE,
for sides 1 &3:  Jus= -V ao
(18.6.5)
for sides 2 & 4:  Jys = £X ZZEO sin (?)

The radiated electric field is obtained from Eq. (17.3.4) by setting F = 0 and calculat-
ing F,; as the sum of the magnetic radiation vectors over the four effective apertures:
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jkr —jkr
e Ik ., e
e I X Fy = jk

The vectors F, are the two-dimensional Fourier transforms over the apertures:

E=jk

t X [Fn1 + Fn2 + Fm3 + Fnal (18.6.6)
41T

Fn(0,8)= [ Js(x,)eRx0I s
A

The integration surfaces dS = dxdy are approximately, dS = ady for 1 & 3, and
dS = adx for 2 & 4. Similarly, in the phase factor e/**+/k¥ we must set x = FL/2
for sides 1 & 3, and y = ¥W/2 for sides 2 & 4. Inserting Eq. (18.6.5) into the Fourier
integrals and combining the terms for apertures 1 & 3 and 2 & 4, we obtain:

. 2hE,
F, =—
m,13 y a

w2 . . .
J (e—kaL/Z + e_]kXL/2)e_ﬂ<yya d)/
-W/2

_2hE, (Y2 _. - o (TX\
Fros =% =20 (e~ /RoW/2 _ @iy W12y gip [ =7 ) e/keXg dx
a ~L/2 L

Note that the a factors cancel. Using Euler’s formulas and the integrals:

W2 ; L/2 72
J Ry = W sin(k, W /2) , I . <B) ok gy = ZkazL Cos(ka/Z)2 ,
—W/2 kyW/2 —L/2 L TT 1— (kxiL)
™
we find the radiation vectors:
Fpi2 = —V4EohW cos(nvx)w
v Y (18.6.7)
. 4vy cos(TTV, .
Fm'24 = X4E0hL ﬁ Sll’l(Tl'Vy)
where we defined the normalized wavenumbers as usual:
kil L |
Vy = o = A sin 0 cos ¢
W W (18.6.8)
_Ww _ W :
vy = Y sin 0 sin ¢

From Eq. (E.8) of Appendix E, we have:
IXy=r1X (fsin@sincl)JrécosOsin(I)+<i>cos¢)z&>cos€sin¢>fécos¢
XX =1X (fsin@cosd)+éc039cosd)—t2>sin(l>): <2>c039cosd>+ésin¢

-

It follows from Eq. (18.6.6) that the radiated fields from sides 1 & 3 will be:

—jkr N "
E(0, )= —jk ZW 4EohW [ cos O sing — O cos p] F(6, p) (18.6.9)

where we defined the function:
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F (0, ¢)= cos(mrvy) w (18.6.10)
y
Similarly, we have for sides 2 & 4:
e‘jkr N ~
E0,¢) = jk anr 4EohL [¢p cos O cosp + @ sind]| (0, P)
4 ( ) (18.6.11)
_4vxcos(ttvy) .
f0,¢) = TA—a?) sin(1vy,)
The normalized gain is found from Eq. (18.6.9) to be:
2
g0,¢)= 'E‘(;# = (cos? Osin? ¢ + cos? ) |F(0, ) |° (18.6.12)
max

The corresponding expression for sides 2 & 4, although not normalized, provides a
measure for the gain in that case:

g(0, )= (cos? 0 cos® ¢ +sin? ) | (0, ) |° (18.6.13)
The E- and H-plane gains are obtained by setting ¢ = 0° and ¢ = 90° in Eq. (18.6.12):

|Eq|?

ge(0) = = |COS(7TVX)|2, vx=£sin9
1Eolnax ; A (18.6.14)
(0)= Egl® _ COSQw Z v *Ksine -
I = g2 v, | 0 T A

Most of the radiation from the microstrip arises from sides 1 & 3. Indeed, F (0, ¢)
has a maximum towards broadside, vx = v), = 0, whereas [ (0, ¢») vanishes. Moreover,
f (0, ¢) vanishes identically for all 8 and ¢ = 0° (E-plane) or ¢p = 90° (H-plane).

Therefore, sides 2 & 4 contribute little to the total radiation, and they are usually
ignored. For lengths of the order of L = 0.3A to L = A, the gain function (18.6.13)
remains suppressed by 7 to 17 dB for all directions, relative to the gain of (18.6.12).

Example 18.6.1: Fig. 18.6.3 shows the E- and H-plane patterns for W = L = 0.3371A. Both
patterns are fairly broad.

The choice for L comes from the resonant condition L = 0.5A/./€,. For a typical substrate
with €, = 2.2, we find L = 0.5A/+/2.2 = 0.3371A.

Fig. 18.6.4 shows the 3-dimensional gains computed from Eqs. (18.6.12) and (18.6.13). The
field strengths (square roots of the gains) are plotted to improve the visibility of the graphs.
The MATLAB code for generating these plots was:

L = 0.5/sqrt(2.2); W =1L;
[th,ph] = meshgrid(0:3:90, 0:6:360); th = th * pi/180; ph = ph * pi/180;

VX
vy

L * sin(th) .* cos(ph);
W * sin(th) .* sin(ph);
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Fig. 18.6.3 [E- and H-plane gains of microstrip antenna.
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Fig. 18.6.4 Two-dimensional gain patterns from sides 1 & 3 and 2 & 4.

E13 = sqrt(cos(th).A2.*sin(ph).A2 + cos(ph).A2);
E13 = E13 .* abs(cos(pi*vx) .* sinc(vy));

figure; surfl(vx,vy,E13);
shading interp; colormap(gray(32));

view([-40,10]);

E24 sqrt(cos(th).A2.*cos(ph).A2 + sin(ph).A2);
E24 = E24 .* abs(4*vx.*dsinc(vx)/pi .* sin(pi*vy));

figure; surfl(vx,vy,E24);
shading interp; colormap(gray(32));

The gain from sides 2 & 4 vanishes along the vx- and v, axes, while its maximum in all
directions is ./g = 0.15 or —16.5 dB. O

Using the alternative aperture model shown on the right of Fig. 18.6.2, one obtains
identical expressions for the magnetic current densities J,,,s along the four sides, and
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therefore, identical radiation patterns. The integration surfaces are now dS = hdy for
sides 1 & 3, and dS = hdx for 2 & 4.

18.7 Parabolic Reflector Antennas

Reflector antennas are characterized by very high gains (30 dB and higher) and narrow
main beams. They are widely used in satellite and line-of-sight microwave communica-
tions and in radar.

At microwave frequencies, the most common feeds are rectangular, circular, or cor-
rugated horns. Dipole feeds—usually backed by a reflecting plane to enhance their ra-
diation towards the reflector—are used at lower frequencies, typically, up to UHF. Some
references on reflector antennas and feed design are [1188-1207].

A typical parabolic reflector, fed by a horn antenna positioned at the focus of the
parabola, is shown in Fig. 18.7.1. A geometrical property of parabolas is that all rays
originating from the focus get reflected in a direction parallel to the parabola’s axis, that
is, the z direction.

— 4 A
7
Pl h ap
R p i)
Y,
D \4 > z Lz
Yoy O\ 0]
feed
a
x L 7 7777777 aperture
~— F —

aperture plane
Fig. 18.7.1 Parabolic reflector antenna with feed at the focus.

We choose the origin to be at the focus. An incident ray OP radiated from the feed
at an angle ¢y becomes the reflected ray PA parallel to the z-axis. The projection of all
the reflected rays onto a plane perpendicular to the z-axis—such as the xy-plane—can
be considered to be the effective aperture of the antenna. This is shown in Fig. 18.7.2.

Let R and h be the lengths of the rays OP and PA. The sum R + h represents the
total optical path length from the focus to the aperture plane. This length is constant,
independent of , and is given by

R+h=2F (18.7.1)

where F is the focal length. The length 2F is the total optical length of the incident and
reflected axial rays going from O to the vertex V and back to O.

Therefore, all the rays suffer the same phase delay traveling from the focus to the
plane. The spherical wave radiated from the feed gets converted upon reflection into a
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Fig. 18.7.2 Parabolic antenna and its projected effective aperture.

plane wave. Conversely, for a receiving antenna, an incident plane wave gets converted
into a spherical wave converging onto the focus.

Since h = Rcosy, Eq. (18.7.1) can be written in the following form, which is the
polar representation of the parabolic surface:

2F

R+Rcosy=2F » R=_—-——, or, (18.7.2)
1+ cosy
2F F
R = - 18.7.
1+cosy cos?(y/2) (18.7.3)

The radial displacement p of the reflected ray on the aperture plane is given by
p = Rsiny. Replacing R from (18.7.3), we find:

sin t,U)
=2F ———— = 2F - 18.7.4
p 1+ cosy tan(2 (18.7.4)

Similarly, using R + h = 2F or F — h = R — F, we have:

Foh=pl=COSV _ g (ﬂ) (18.7.5)
1+ cosy 2

It follows that h and p will be related by the equation for a parabola:
4F(F — h) = p? (18.7.6)

In terms of the xyz-coordinate system, we have p? = x° + y? and z = —h, so that
Eq. (18.7.6) becomes the equation for a paraboloid surface:

4F(F+2z)=x>+? (18.7.7)
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The diameter D, or the radius a = D/2, of the reflector and its focal length F deter-
mine the maximum angle . It is obtained by setting p = a in Eq. (18.7.4):

_D_ ﬂ) _ (2)
a= > —2Ftan( > > Yo = 2atan iF (18.7.8)

Thus, the F/D ratio determines (/o. For example, if F/D = 0.25,0.35,0.50, then
Yo = 90°, 71°, 53°. Practical F/D ratios are in the range 0.25-0.50.

18.8 Gain and Beamwidth of Reflector Antennas

To determine the radiation pattern of a reflector antenna, one may use Eq. (17.4.2),
provided one knows the aperture fields E;, H; on the effective aperture projected on
the aperture plane. This approach is referred to as the aperture-field method [21].

Alternatively, the current-distribution method determines the current Js on the sur-
face of the reflector induced by the incident field from the feed, and then applies
Eq. (17.4.1) with J,s = 0, using the curved surface of the reflector as the integration
surface (J,,;s vanishes on the reflector surface because there are no tangential electric
fields on a perfect conductor.)

The two methods yield slightly different, but qualitatively similar, results for the
radiation patterns. The aperture fields E,, H; and the surface current J; are determined
by geometrical optics considerations based on the assumptions that (a) the reflector
lies in the radiation zone of the feed antenna, and (b) the incident field from the feed
gets reflected as if the reflector surface is perfectly conducting and locally flat. These
assumptions are justified because in practice the size of the reflector and its curvature
are much larger than the wavelength A.

We use the polar and azimuthal angles ¢ and x indicated on Fig. 18.7.2 to charac-
terize the direction R of an incident ray from the feed to the reflector surface.

The radiated power from the feed within the solid angle dQ = sin ¢ dy dx must be
equal upon reflection to the power propagating parallel to the z-axis and intercepting
the aperture plane through the area dA = pdpdy, as depicted in Fig. 18.7.1.

Assuming that Ugeeq (Y, X) is the feed antenna’s radiation intensity and noting that
|E4|?/2n is the power density of the aperture field, the power condition reads:

1 . 1 .
on |Eq2dA = Upeed (W, X)dQ = n |Eql?pdp = Useea (W, X)sinp dy  (18.8.1)

where we divided both sides by dx. Differentiating Eq. (18.7.4), we have:

_opdy 1 _
dp =2F 2 cos?(y/2) = Rdy

which implies that pdp = R? sin ¢ dy. Thus, solving Eq. (18.8.1) for |E4|, we find:

1
|Eq(p,Xx)| = Rf\/anfecd(qJ,x) (18.8.2)

where we think of E,; as a function of p = 2F tan(y//2) and x. Expressing R in terms
of p, we have R = 2F —h = F + (F — h) = F + p?/4F. Therefore, we may also write:
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4F
[Ea(p,X)] = m\IZUUm(w,x) (18.8.3)

Thus, the aperture fields get weaker towards the edge of the reflector. A measure of
this tapering effect is the edge illumination, that is, the ratio of the electric field at the
edge (p = a) and at the center (p = 0). Using Eqgs. (18.7.3) and (18.8.2), we find:

|Eq(a,X)| _ 1+cos@o |Uteed(Wo,X)
[Eq(0,x) 1 2 Uteed (0, X)

(edge illumination) (18.8.4)

In Sec. 17.6, we defined the directivity or gain of an aperture by Eq. (17.6.10), which
we rewrite in the following form:

_ 47 Unax

G 18.8.5
a P, ( )
where P, is the total power through the aperture given in terms of E, as follows:
1 . Yo 21
P, = —I |Eql?dA = J Useea (@, X) sin g dy dx (18.8.6)
2n Ja o Jo

and we used Eq. (18.8.1). For a reflector antenna, the gain must be defined relative to
the total power Pieeq of the feed antenna, that is,

41 Unax 41Umax  Pa
Gant = = =
Pteed Pg Pteed

The factor egp) = P,/ Preeq is referred to as the spillover efficiency or loss and repre-
sents the fraction of the power Ptqq that actually gets reflected by the reflector antenna.
The remaining power from the feed “spills over” the edge of the reflector and is lost.

We saw in Sec. 17.4 that the aperture gain is given in terms of the geometrical area
A of the aperture and the aperture-taper and phase-error efficiencies by:

= Gaespl (18.8.7)

41TA

Ga = T €atl €pel (18.8.8)
It follows that the reflector antenna gain can be written as:
41TA
Gant = Gaespl = A2 €atl €pel Espl (18.8.9)

The total aperture efficiency is e = eaq €pel €sp1. In practice, additional efficiency or
loss factors must be introduced, such as those due to cross polarization or to partial
aperture blockage by the feed.

Of all the loss factors, the ATL and SPL are the primary ones that significantly affect
the gain. Their tradeoff is captured by the illumination efficiency or loss, defined to be
the product of ATL and SPL, ey = e,y €sp1.

The ATL and SPL may be expressed in terms of the radiation intensity Ugeeq (¥, X) -
Using pdp = R? sinpdy = pRdy = 2FR tan(y/2)dy and Eq. (18.8.2), we have:

1
[EaldA = \20Uteeq 7 2FR tan%dw dx = 2F \[2nUteea tan%d(pdx

. | T .
‘Ea‘sz = 2nUteed ﬁRZ sin dy dx = 2nUreea siny dy dx
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The aperture area is A = ma® = 1(2F)%tan®(o/2). Thus, it follows from the
definition (17.6.13) that the ATL will be:

2 2

UA |Ea| dA (2F)? jA\/ZnUfeed tan ¥ dy dx

Can = = , or,
AJ |Eq|?dA Tr(2F)2tan2((,Uo/2)J 2NUseeq sin @ dy dx
A A

Wo 21 W 2
J J \Ufeed(w:X) tan_d(l/dx‘
o Jo 2

Yo 21
4[0 0 Ufeed((pxX)Sin(I/d(I/dx

ean = %cot2 (ﬁ) (18.8.10)

2
Similarly, the spillover efficiency can be expressed as:
Yo 2m
p j Uteed (W, X)siny dy dx
a 0 Jo

Cspl = = Tmoeem (18.8.11)
L o Uteed (W, X)siny dy dx

where we replaced Preeq by the integral of Useeq over all solid angles. It follows that the
illumination efficiency ey = e,y esp will be:

Yo 21 (l/ 2
J J mtan—dwdx'
o Jo 2

™ 2T
JO . Useea (@, X) siny dy dx

1
e = L cot? (—"’0 ) (18.8.12)
™ 2

An example of a feed pattern that approximates practical patterns is the following
azimuthally symmetric radiation intensity [21]:

Upcos*y, if Oswsg
Uteed (Y, X) = T (18.8.13)
0, if —<y=sm
For this example, the SPL, ATL, and ILL can be computed in closed form:
espl = 1 — cos® Yo
.4 2
e = 40 cot? (/2) LM (Wo/2) +1In(cos(wo/2))] (18.8.14)
1 - cos® Yy
e = 40 cot? (Wo/2) [sin* (wo/2) +In(cos (wo/2)) ]
The edge illumination is from Eq. (18.8.4):
Ea(Wo)| _ 1+coswo cos?® Yo (18.8.15)

|Eq(0)] 2

Fig. 18.8.1 shows a plot of Egs. (18.8.14) and (18.8.15) versus g. The ATL is a
decreasing and the SPL an increasing function of /(. The product ej = e,y esp) reaches
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ATL, SPL, ILL, and Edge Illumination

0.8 §
--- atl
[ |-~ spl
061 | iy
edge
0.4r
0.21

G0 10 20 30 40 50 60 70 80 90
¥, (degrees)

Fig. 18.8.1 Tradeoff between ATL and SPF.

the maximum value of 0.82 at /9 = 53.31°. The corresponding edge illumination is
0.285 or —10.9 dB. The F/D ratio is cot(y(/2) /4 = 0.498.

This example gives rise to the rule of thumb that the best tradeoff between ATL and
SPL for parabolic reflectors is achieved when the edge illumination is about —11 dB.

The value 0.82 for the efficiency is an overestimate. Taking into account other losses,
the aperture efficiency of practical parabolic reflectors is typically of the order of 0.55-
0.65. Expressing the physical area in terms of the diameter D, we can summarize the
gain of a parabolic antenna:

G=ey

, with e; = 0.55-0.65 (18.8.16)

aTA D2
a2 Ty

Aswe discussed in Sec. 15.3, the 3-dB beamwidth of a reflector antenna with diameter
D can be estimated by rule of thumb [1200]:

A
A3 = 70° D (18.8.17)

The beamwidth depends also on the edge illumination. Typically, as the edge attenu-
ation increases, the beamwidth widens and the sidelobes decrease. By studying various
reflector sizes, types, and feeds Komen [1201] arrived at the following improved approx-
imation for the 3-dB width, which takes into account the edge illumination:

A
AB3q = (1.05° Aegge + 55.95°) D (18.8.18)

where Aeqge is the edge attenuation in dB, that is, Aedge = —2010g,o[|Ea(Wo) /Eq(0)]].
For example, for Aegge = 11 dB, the angle factor becomes 67.5°.

18.9 Aperture-Field and Current-Distribution Methods

In the previous section, we used energy flow considerations to determine the magnitude
|E4| of the aperture field. To determine its direction and phase, we need to start from

18.9. Aperture-Field and Current-Distribution Methods 755

the field radiated by the feed antenna and trace its path as it propagates as a spherical
wave to the reflector surface, gets reflected there, and then propagates as a plane wave
along the z-direction to the aperture plane.

Points on the reflector surface will be parametrized by the spherical coordinates
R, @, x as shown in Figs. 18.7.1 and 18.7.2, and points in the radiation zone of the
reflector antenna, by the usual r, 0, ¢.

Let R, (¢, X be the unit vectors in the R, , x directions. The relationships of R, y, x

to the conventional polar coordinates of the x"y’z" coordinate system are: R s

Y =0 buty = —ci) so that the unit vectors are R = ¥, ¢ = 0 and X = —4) (The
primed system has ¥ =%,y = -y, and X = —2.) In terms of the unprimed system:

R

Xsiny cosx + ysinysinx — Zcos y

Xcosycosx +ycosysiny + Zsiny (18.9.1)

<
Il

X = —Xsinx + ycosx
and conversely, A .
=Rsinycosx + Y cos Y cosx — X sinyx
§7=ﬁsin([/sinx+(i/cos([/sinx+f(cosx (18.9.2)
= —Rcosy + siny

Because the reflector is assumed to be in the radiation zone of the feed, the most
general field radiated by the feed, and incident at the point R, ¢/, ¥ on the reflector
surface, will have the form:

e-JkR

E; = fily,x) (incident field) (18.9.3)

Because of the requirement R - E; = 0, the vector function f; must satisfy R - f; = 0.
As expected for radiation fields, the radial dependence on R is decoupled from the
angular dependence on y, x. The corresponding magnetic field will be:

1. 1 e JkR

RX fi(y,Xx) (18.9.4)

The feed’s radiation intensity Uteeq is related to f; through the definition:
Uteed (@ x):RzileZ:i!f(w X) | (18.9.5)
eel ’ 27'[ i 2'7 i ’ -J.

Assuming that the incident field is reflected locally like a plane wave from the reflec-
tor’s perfectly conducting surface, it follows that the reflected fields E,, H, must satisfy
the following relationships, where where 11 is the normal to the reflector:

ﬁXEr:*ﬁXE,‘, n-E,=n-E;

. . . (18.9.6)
nx H =nXxH;, n-H,=-n-H;

These imply that |E,| = |E;|, |H,| = |H;|, and that:
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E, = —-E;+2n(h- Ej)

~on (18.9.7)
H, =H; - 21‘1(11 . Hi)

Thus, the net electric field E; + E, is normal to the surface. Fig. 18.9.1 depicts these
geometric relationships, assuming for simplicity that E; is parallel to (.

. M
incident field ‘E i
‘ A

l E, aperture field
reflected field

aperture

Fig. 18.9.1 Geometric relationship between incident and reflected electric fields.

The proof of Eq. (18.9.7) is straightforward. Indeed, using i X (E; + E;) = 0 and the
BAC-CAB rule, we have:

0= (AX (E;+E,))xh=E;+E,—Aa(-E;+h-E)=FE;+E —a(2h-E;)

It follows now that the reflected field at the point (R, , x) will have the form:

e—JkR
E, = R fr(y,x) (reflected field) (18.9.8)

where f, satisfies |f,| = |f;| and:

fr=—fi+2a(@-f;) (18.9.9)

The condition R - fi = 0 implies that Z - f, = 0, so that f, and E, are perpendicular
to the z-axis, and parallel to the aperture plane. To see this, we note that the normal
1, bisecting the angle ~OPA in Fig. 18.9.1, will form an angle of /2 with the z axis, so
that 2 - i = cos(y/2). More explicitly, the vector fi can be expressed in the form:

n= —Rcos% + dlsin% = Zcos% — (Xcosx +§/sinx)sin% (18.9.10)

Then, using Eq. (18.9.2), it follows that:

Z2-fr=-2-f;+2(2Z-RA) @& f)
= —(—Rcosq/+(i/sinlp)-f,-+2cos%(—f{cos% -Hi/sin%)-f,-
= —((i/-f,—)[sinqj—Zcos%sin%] =0
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Next, we obtain the aperture field E,; by propagating E, as a plane wave along the
z-direction by a distance h to the aperture plane:
o~k (R+h)

E,=eJKE, = IR

frw,x)

But for the parabola, we have R + h = 2F. Thus, the aperture field is given by:

o—2IKF

E; = R

fa(w,x) (aperture field) (18.9.11)

where we defined f, = f,, so that:

‘fﬂ = —fi+28@A-f) (18.9.12)

Because |f;| = If,| = Ifil = V2NUfteeq, it follows that Eq. (18.9.11) is consistent with
Eq. (18.8.2). As plane waves propagating in the z-direction, the reflected and aperture
fields are Huygens sources. Therefore, the corresponding magnetic fields will be:

1 1
H,=—-2XE,, Hy=—-2XE,
n n

The surface currents induced on the reflector are obtained by noting that the total
fields are E; + E, = 2n(n - E;) and H; + H, = 2H; — 2n(n - H;). Thus, we have:

Jo=tx (Hi+H,)=20axH; = R X f;

Jms = —n X (Ei+Er):0

18.10 Radiation Patterns of Reflector Antennas

The radiation patterns of the reflector antenna are obtained either from the aperture
fields E,, H, integrated over the effective aperture using Eq. (17.4.2), or from the cur-
rents J and Jy,;s = O integrated over the curved reflector surface using Eq. (17.4.1).

We discuss in detail only the aperture-field case. The radiation fields at some large
distance r in the direction defined by the polar angles 0, ¢ are given by Eq. (17.5.3). The
unit vector ¥ in the direction of 0, ¢ is shown in Fig. 18.7.2. We have:

eJkr 1 4+ cos O

Eo=jk'y " fxcos +fysincp]
N (18.10.1)
e /K" 1 + cos @ .
Ep=jk o~ [fycos ~ fxsingb]
where the vector f= Xfx + ¥fy is the Fourier transform over the aperture:
a r2m o,
f(0,¢)= L L Eqa(p',x) &% p'dp’dx (18.10.2)



758 18. Aperture Antennas
The vector 1’ lies on the aperture plane and is given in cylindrical coordinates by
r' =p'p=p (Xcosx +ysiny). Thus,
k-r' =kp' (Rcos¢sind +ysingsind + zcos0) - (Xcosx + ysiny)
=kp'sin0 (cos ¢ cosx + sin¢gsinx) = kp’ sin0 cos(¢p — x)

It follows that:

a 2t
fo,¢)= J J Eq(p,x) elkpsin0cos(@=X) 5 45 gy (18.10.3)
0 Jo

We may convert this into an integral over the feed angles y, x by using Eq. (18.9.11)
anddp = Rdy, p =2Ftan(y/2),and pdp = 2FR tan(y/2) dy. Then, the 1/R factor
in E; is canceled, resulting in:

_rwo 2w S .
f(9,d>):2Fe*ZJ"FI J fa(tp,x)eZJkan%Sm"m@*x)tan%dwdx (18.10.4)
0 0

Given a feed pattern f;(y, X), the aperture pattern f, (@, X) is determined from
Eg. (18.9.12) and the integrations in (18.10.4) are done numerically.

Because of the condition R - f; = 0, the vector f; will have components only along
the ¢ and X directions. We assume that f; has the following more specific form:

fi=@F;siny +XFacosx (y-polarized feeds) (18.10.5)

where F, F; are functions of ¢, x, but often assumed to be functions only of (, repre-
senting the patterns along the principal planes x = 90° and x = 0°.

Such feeds are referred to as “y-polarized” and include y-directed dipoles, and
waveguides and horns in which the electric field on the horn aperture is polarized along
the y direction (the x-polarized case is obtained by a rotation, replacing x by x + 90°.)
Using Egs. (18.9.1) and (18.9.10), the corresponding pattern f, can be worked out:

fa = ~9[Fisin’ X + F2cos’ x] — X[ (F) — F2)cos X sinx] | (18.10.6)

If F; = F,, we have f, = —y Fy. Butif F; # F,, the aperture field E; develops a
“cross-polarized” component along the x direction. Various definitions of cross polar-
ization have been discussed by Ludwig [1206].

As examples, we consider the cases of a y-directed Hertzian dipole feed, and waveg-
uide and horn feeds. Adapting their radiation patterns given in Sections 16.2, 18.1, and
18.3, to the R, Y/, X coordinate system, we obtain the following feed patterns, which are
special cases of (18.10.5):

fi(w,x)=F4 (g cosysiny + X cosx) (dipole feed)
fi(w,x)=Fy(y,x) (@siny +Xcosy) (waveguide feed) (18.10.7)
fi(w,x)=Fp(y,x) (Psiny +xcosy) (horn feed)

where Fy is the constant Fg = —jn (Il)/2A, and Fy,, F, are given by:
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_jabEO
TA

JABE,
8A
where I,] are the current and length of the Hertzian dipole, a,b and A, B are the di-
mensions of the waveguide and horn apertures, and vx = (a/A)singcosy, vy =
(b/A)sin y sin x for the waveguide, and vx = (A/A)siny cos x, vy = (B/A)siny siny,
for the horn, and F;, F are the horn pattern functions defined in Sec. 18.3. The corre-

sponding aperture patterns f,; are in the three cases:

cos(1Tvy) sin(1rvy)
1-4vi 1y

Fy (@, X) = (1 +cosy)

(18.10.8)

Fn(yp,X) = - (1 + cos ) Fy1(vx,04) Fo(vy,0p)

fa(@,x)=—VF4[cosysin® x + cos® x| — % F4[(cosy — 1)sinx cos x|
fa(W,X)=-VFw(W,X) (18.10.9)
fa(lIJ:X): *SA’Fh(lIhX)

In the general case, a more convenient form of Eq. (18.10.6) is obtained by writing it
in terms of the sum and difference patterns:

_F1+F2 B_F17F2

A
2 2

< F=A+B, F,=A-B (18.10.10)

Using some trigonometric identities, we may write (18.10.6) in the form:

fa=-¥(A-Bcos2y) - k(Bsin2y) | (18.10.11)

In general, A, B will be functions of ¢/, x (as in the waveguide and horn cases.) If we
assume that they are functions only of (, then the x-integration in the radiation pattern
integral (18.10.4) can be done explicitly leaving an integral over ¢ only. Using (18.10.11)
and the Bessel-function identities,

21
jucos(p—x) | COSNX _ | cosneg
JO e X [ sinnx ] dx = 2mj [ sinng ]Jn(u) (18.10.12)
we obtain:
‘f(9,¢)= —V[fa(0)—f5(0)cos2¢] — X[fp(6)sin2¢] ’ (18.10.13)

where the functions f4 (0) and fg(6) are defined by:

i 7
fa(0) = 4nFe’2~’kFJ 0A((,U) To (? tan% sin@) tan%dw
0

v
2

(18.10.14)

W

. Yo
fp(0) = 741TFe‘ZJkF'[ B(y) J» (# tanE sin@) tan — dy
0

Using Eq. (18.10.13) and some trigonometric identities, we obtain:

fxcos +f,sing = —(fa + fp)sinp
fycos —fxsing = —(fa — fp)cos P
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It follows that the radiation fields (18.10.1) are given by:

—jkr
Eo = #[fm)#gw)] sin ¢b

ke 0 (18.10.15)
Ep =S R [ (0) £ (0)] cos b

Example 18.10.1: Parabolic Reflector with Hertzian Dipole Feed. We compute numerically the

gain patterns for a y-directed Hertzian dipole feed. We take F = 10A and D = 40A, so that
F/D = 0.25 and o = 90°. These choices are similar to those in [1204].

Ignoring the constant Fy in (18.10.7), we have F, (@)= cosy and F, (¢) = 1. Thus, the
sum and difference patters are A(y¢)= (cosy +1)/2 and B(y)= (cosy —1)/2. Up to
some overall constants, the required gain integrals will have the form:

Yo Yo
Fa(0)= L Fa(p,0)dy,  f5(0)= L Fo(y,0) dy (18.10.16)
where ATtF
Fa(y,0) = (14 cosy) Jo (%tan%sin@) tan%
ATCF (18.10.17)
Fp(y,0) = (1 —cosy) Jo <%tan%sin9) tan%

The integrals are evaluated numerically using Gauss-Legendre quadrature integration, which
approximates an integral as a weighted sum [1298]:

N
fa(@)=> wiFa(y;,0)=w'F4

i=1

where wj, (; are the Gauss-Legendre weights and evaluation points within the integration
interval [0, /o], where F4 is the column vector with ith component F4 (y;, 0).

For higher accuracy, this interval may be subdivided into a number of subintervals, the
quantities w;, ; are then determined on each subinterval, and the total integral is evalu-
ated as the sum of the integrals over all the subintervals.

We have written a MATLAB function, quadrs, that determines the quantities w;, (; over
all the subintervals. It is built on the function quadr, which determines the weights over
a single interval.

The following MATLAB code evaluates and plots in Fig. 18.10.1 the E- and H-plane patterns
(18.10.15) over the polar angles 0 < 6 < 5°.

F = 10; D = 40; psi0 = 2*acot(4*F/D); % F/D = 0.25, o = 90°

ab = linspace(0, psiO, 5);
[w,psi] = quadrs(ab);

% 4 integration subintervals in [0, g ]

% quadrature weights and evaluation points
% uses 16 weights per subinterval

c = cos(psi); t = tan(psi/2); % cos , tan(y/2) at quadrature points

th = Tinspace(0, 5, 251); % angle 0 in degrees over 0 < 0 < 5°
for i=1:length(th),

u = 4*pi*F*sin(th(i)*pi/180); %u = 2kFsin0
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Fig. 18.10.1 Parabolic reflector patterns with dipole feed.

FA = (1+c) .* besselj(0, u*t) .* t;
fAG) =w’ * FA;
FB = (1-c) .* besselj(2, u*t) .* t;
fB(i) = w’ * FB;

end

% integrand of f4 (0)
% integral evaluated at O
% integrand of fg (0)

gh = abs((l+cos(th*pi/180)).*(fA-fB)); gh = gh/max(gh);
ge = abs((1+cos(th*pi/180)).*(fA+fB)); ge = ge/max(ge);

% gain patterns

plot(-th,ge,’-’, th,ge, ’-’, -th,gh,’--’,th,gh,’--");

The graph on the right has (/g = 90° and D = 80A, resulting in a narrower main beam. 0O

Example 18.10.2: Parabolic Reflector with Waveguide Feed. We calculate the reflector radiation

patterns for a waveguide feed radiating in the TE;y mode with a y-directed electric field.
The feed pattern was given in Eq. (18.10.7). Ignoring some overall constants, we have with
vy = (a/A)siny cos x and v, = (b/A)siny sin x:

cos(1rvy) sin(1rvy)

i = (1+
fi = (1 +cosy) 1—4v3 ™)

(@ siny + X cosx) (18.10.18)
To avoid the double integration in the y and x variables, we follow Jones’ procedure
[1204] of choosing the a, b such that the E- and H-plane illuminations of the paraboloid
are essentially identical. This is accomplished when a is approximately a = 1.37b. Then,

the above feed pattern may be simplified by replacing it by its E-plane pattern:

fi = (1 + cos l[/)M (¢ sinx + X cosx) (18.10.19)
where vy, = (b/A)siny. Thus, F; = F, and
A@W)= (1+cos ) % and B(y)=0 (18.10.20)
The radiated field is given by Eq. (18.10.15) with a normalized gain:
g(0)= ‘M [a®) 2 (18.10.21)

2 fa(0)
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where f4 (0) is defined up to a constant by Eq. (18.10.14):

W

Yo 41TF
fa(0)= L) A) Jo (%tan;sin@) tan ¥

3dq/ (18.10.22)
We choose a parabolic antenna with diameter D = 40A and subtended angle of (g = 60°,
so that F = D cot((/2) /4 = 17.3205A. The length b of the waveguide is chosen such as
to achieve an edge illumination of —11 dB on the paraboloid. This gives the condition on
b, where the extra factor of (1 + cos ) arises from the space attenuation factor 1/R:

sin(1tb sin o /A)
Th sin Yo /A

[Ei(Wo)| _ (1 +coswo)2
[Ei (0) ] 2

‘ =10711/20 = 0.2818 (18.10.23)

It has solution b = 0.6958A and therefore, a = 1.37b = 0.9533A. The illumination effi-
ciency given in Eq. (18.8.12) may be taken to be a measure of the overall aperture efficiency
of the reflector. Because 2nUgeed = Ifil> = |f4]? = |A (@) |?, the integrals in (18.8.12) may
be calculated numerically, giving e, = 0.71 and a gain of 40.5 dB.

The pattern function f4 (6) may be calculated numerically as in the previous example. The
left graph in Fig. 18.10.2 shows the E- and H-plane illumination patterns versus  of the
actual feed given by (18.10.18), that is, the normalized gains:

2
| (1+cosy)? sin(mbsiny/A)
9e(¥) = ’ 4 mhsin /A ‘
) 2
| (A +cosy)? cos(masiny/A)
gn () = ’ 4 1 —4(mrasiny/A)2

They are essentially identical provided a = 1.37b (the graph actually plots the square
roots of these quantities.) The right graph shows the calculated radiation pattern g (60)
(or, rather its square root) of the paraboloid.

Feed Illumination Patterns Paraboloid Reflector Pattern
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20 0 20 -2 0 2
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Fig. 18.10.2 Feed illumination and reflector radiation patterns.

The following MATLAB code solves (18.10.23) for b, and then calculates the illumination
pattern and the reflector pattern:
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F

17.3205; D = 40; psi0 = 2*acot(4*F/D); % Yo = 60°

f = inline(’ (1+cos(x)).A2/4 * abs(sinc(b*sin(x))) - A’,’b’,’x’,’A’);

Aedge = 11;
b = fzero(f,0.8,optimset(’display’,’off’), psi0, 10A(-Aedge/20));
a = 1.37 * b;

psi = linspace(-psi0O, psi0, 201); ps = psi * 180/pi;

gE = abs((1+cos(psi)).A2/4 .* sinc(b*sin(psi)));
gH = abs((1+cos(psi)).A2/4 .* dsinc(a*sin(psi)));

figure; plot(ps,gE,”-", ps,gH,’--");
[w,psi] = quadrs(linspace(0, psi0O, 5));

s = sin(psi); ¢ = cos(psi); t = tan(psi/2);
A = (1+c) .* sinc(b*s);

% quadrature weights and points
% the pattern A ()
thd = Tinspace(0, 5, 251); th = thd*pi/180;
for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = A .* besselj(0, u*t) .* t;
fAG)) = w’ * FA;
end
g = abs((1l+cos(th)) .* fA); g = g/max(g);
figure; plot(-thd,g,’-’, thd,g);
The 3-dB width was calculated from Eq. (18.8.18) and is placed on the graph. The angle

factor was 1.05Acdge + 55.95 = 67.5, so that AO3qz = 67.5°A/D = 67.5/40 = 1.69°. The
gain-beamwidth product is p = G (A03q5) %= 1040519 (1,69°)2 = 32046 deg’. m}

Example 18.10.3: Parabolic Reflector with Horn Feed. Fig. 18.10.3 shows the illumination and

reflector patterns if a rectangular horn antenna feed is used instead of a waveguide. The
design requirements were again that the edge illumination be -11 dB and that D = 40A
and o = 60°. The illumination pattern is (up to a scale factor):

fi = (1+cos @) Fy (vx,04) Fo(vy,0p) (@ siny + X cos x)

The E- and H-plane illumination patterns are virtually identical over the angular range
0 < ¢ < Y, provided one chooses the horn sides such that A = 1.48B. Then, the
illumination field may be simplified by replacing it by the E-plane pattern and the length B
is determined by requiring that the edge illumination be -11 dB. Therefore, we work with:

fi= (1+cos)Fo(vy,0p) (Ysiny +Xcosx), Vy= iisin(p

Then, A ()= (1 + cosy)Fo(vy,0p) and B(y)= 0 for the sum and difference patterns.
The edge illumination condition reads now:

Fo(Bsinyg/A, op)

— 10-11/20
Fy (0, 0p)

(1+cosw0>2
2
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Its solution is B = 0.7806A, and hence A = 1.48B = 1.1553A. The left graph in Fig. 18.10.3
shows the E- and H-plane illumination gain patterns of the actual horn feed:

|+ cos )2 Fo(Bsiny/A,op) :
e (W) = ' 4 Fo(0, 0p)

| (L+cosy)?® Fi(Asing/A,04)
gu (P) = ' 1 F1(0,00)

They are seen to be almost identical. The right graph shows the reflector radiation pattern
computed numerically as in the previous example. The following MATLAB code illustrates
this computation:

[w,psi] = quadrs(linspace(0, psi0O, 5)); % 4 subintervals in [0, ¢ ]

s = sin(psi); ¢ = cos(psi); t = tan(psi/2);
Apsi = (1+c) .* (diffint(B*s, sb, 0));

% evaluate at quadrature points
% the pattern A (y)

thd = Tinspace(0, 8, 251); th = thd*pi/180;

for i=1:length(th),
u = 4*pi*F*sin(th(i));
FA = Apsi .* besselj(0, u*t) .* t;
fAG) = w’ * FA;

end

g = abs((1+cos(th)) .* fA); g = g/max(g);

figure; plot(-thd,g,’-’, thd,g);

The horn’s o-parameters were chosen to have the usual optimum values of o, = 1.2593
and 0p = 1.0246. The 3-dB width is the same as in the previous example, that is, 1.69°
and is shown on the graph. The computed antenna efficiency is now e, = 0.67 and the
corresponding gain 40.24 dB, so that p = G (A03q5) %= 1040-24/10 (1,69°)2 = 30184 deg?
for the gain-beamwidth product. m]

Example 18.10.4: Here, we compare the approximate symmetrized patterns of the previous

two examples with the exact patterns obtained by performing the double-integration over
the aperture variables y, x.

Both the waveguide and horn examples have a y-directed two-dimensional Fourier trans-
form pattern of the form:

Yo 2m
fA<9,¢>:fy<9,¢>:L jo Fa(,x, 0, ) dy dx

(18.10.24)
where the integrand depends on the feed pattern A (g, X):
FA(W X 0 ¢): A(W X) eiZkF!an(w/Z)sinOcns(QSfx) tan "4 (18.10.25)
X 0, ) 5 .10.
and, up to constant factors, the function A (g, x) is given in the two cases by:
cos (1rvy) sin(1Tvy)
Aly,x) =10+ —_—
(@, x) = (1 +cosy) "
(18.10.26)

A(WvX) =(1 +COS‘,U)F1 (Vx, (Ta)FO(Vyy (Tb)
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Fig. 18.10.3 Feed and reflector radiation patterns.
where vy = (a/A)sinycosx and v, = (b/A)siny siny for the waveguide case, and

vx = (A/A)siny cos x and vy, = (B/A)siny sin x for the horn.

Once, f4 (0, ¢) is computed, we obtain the (un-normalized) H- and E-plane radiation pat-

terns for the reflector by setting ¢ = 0° and 90°, that is,

g (0)= | (1+cos0)f1(0,0°)]°, gp(@)=|(1+cos0)fa(0,90°)|* (18.10

.27)

The numerical evaluation of Eq. (18.10.24) can be done with two-dimensional Gauss-Legendre

quadratures, approximating the integral by the double sum:

N1 N2

fa(0, )= 2" > Wi Fa (Wi, Xj)Waj = Wi Fawy

i=1j=1

(18.10

where {wy;, @} and {wyj, x;} are the quadrature weights and evaluation points over

.28)

the

intervals [0, o] and [0, 277], and F4 is the matrix F 4 (y;, X;). The function quadrs, called

on these two intervals, will generate these weights.

Fig. 18.10.4 shows the patterns (18.10.27) of the horn and waveguide cases evaluated

nu-

merically and plotted together with the approximate symmetrized patterns of the previous

two examples. The symmetrized patterns agree very well with the exact patterns and

fall

between them. The following MATLAB code illustrates this computation for the horn case:

[wl, psil] quadrs(Tinspace(0, psi0, Ni));
[w2, chi] = quadrs(linspace(0, 2*pi, Ni));

% quadrature over [0, Wol, Nj =5
% quadrature over [0,217], N; =5

sinpsi = sin(psi); cospsi = cos(psi); tanpsi = tan(psi/2);
sinchi = sin(chi); coschi = cos(chi);

for i = 1l:length(chi), % build matrix A (y;, ;) columnwise
Apsi(:,1) = diffint(A*sinpsi*coschi(i), sa, 1) ...
L diffint(B*sinpsi*sinchi(i), sb, 0);
end
Apsi = repmat(tanpsi.*(l+cospsi), 1, length(psi)) .* Apsi;

th = linspace(0, 8, 401) * pi/180;



766 18. Aperture Antennas
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Fig. 18.10.4 Exact and approximate reflector radiation patterns.

for i=1:Tength(th),
u = 4*pi*F*sin(th(i));
FH = Apsi .* exp(j*u*tanpsi*coschi’);
FE = Apsi .* exp(j*u*tanpsi*sinchi’);
fH(i) = wl’ * FH * w2;
fE(I) = wl’ * FE * w2;

end

% u = 2kF sin 6

% H-plane, ¢ = 0°

% E-plane, ¢p = 90°

% evaluate double integral

gH abs((1+cos(th)).*fH); gH = gH/max(gH);
gE = abs((1+cos(th)).*fE); gE = gE/max(gE);

% radiation patterns

The patterns are plotted in dB, which accentuates the differences among the curves and
also shows the sidelobe levels. In the waveguide case the resulting curves are almost
indistinguishable to be seen as separate. m]

18.11 Dual-Reflector Antennas

Dual-reflector antennas consisting of a main reflector and a secondary sub-reflector are
used to increase the effective focal length and to provide convenient placement of the
feed.

Fig. 18.11.1 shows a Cassegrain antenna! consisting of a parabolic reflector and
a hyperbolic subreflector. The hyperbola is positioned such that its focus F;, coincides
with the focus of the parabola. The feed is placed at the other focus, F1, of the hyperbola.

The focus F; is referred to a “virtual focus” of the parabola. Any ray originating from
the point F; will be reflected by the hyperbola in a direction that appears to have origi-
nated from the focus F», and therefore, it will be re-reflected parallel to the parabola’s
axis.

To better understand the operation of such an antenna, we consider briefly the re-
flection properties of hyperbolas and ellipses, as shown in Fig. 18.11.2.

TInvented in the 17th century by A. Cassegrain.
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Fig. 18.11.1 Cassegrain dual-reflector antenna.

The geometrical properties of hyperbolas and ellipses are characterized completely
by the parameters e, a, that is, the eccentricity and the distance of the vertices from
the origin. The eccentricity is e > 1 for a hyperbola, and e < 1 for an ellipse. A circle
corresponds to e = 0 and a parabola can be thought of as the limit of a hyperbola in the
limit e = 1.

reflected ray

Fig. 18.11.2 Hyperbolic and elliptic reflectors.

The foci are at distances F; and F, from a vertex, say from the vertex V,, and are
given in terms of a, e as follows:

Fi=a(e+1), F,=a(e—-1) (hyperbola)

Fi=a(l+e), Fa=a(l-e) (ellipse) (18.11.1)
The ray lengths R; and R, from the foci to a point P satisfy:
Ri1 — R, =2a (hyperbola) (18.11.2)

Ri1+ Ry =2a (ellipse)
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The polar representations of the hyperbola or ellipse may be given in terms of the
polar angles ¢/; or ¢». We have:

2 2
a(ec—1 a(ec—1
R, = ¥, R, = ¥ (hyperbola)
ecosy; —1 ecosyr +1
» » (18.11.3)
a(l —e?) a(l —e?) .
R=————, Rp= ——— (ellipse)
1—-ecosy; 1—-ecosy:

Note that we can write a(e? — 1)= F;(e — 1)= F»(e + 1). For the hyperbola, the
denominator of R; vanishes at the angles /; = + acos(1/e), corresponding to two lines
parallel to the hyperbola asymptotes.

In the cartesian coordinates X, z (defined with respect to the origin O in the figure),
the equations for the hyperbola and the ellipse are:

(e2-1)z2 —x*>=a%(e?-1) (hyperbola)
(1-e%)z2+x%=a’(1-e? (ellipse) (18.11.4)

The semi-major axes are b? = a? (e — 1) or a(1 — e?). Because of the constraints
(18.11.2), the angles /1, Y, are not independent of each other. For example, solving for
> in terms of /1, we have in the hyperbolic case:

e?cosy; — 2e + cos Y

cos = 18.11.5
w2 ez —2ecosy; +1 ( )
This implies the additional relationship and the derivative:
l+cosy, [ 1+cosy, (e—l)
ecost[/z+1_ ecosy —1 e+1
(18.11.6)

dy,  siny, (ecostpz+1>2

dy,  siny, \ecosy; —1

The incident ray R; reflects off the surface of either the hyperbola or the ellipse as
though the surface is locally a perfect mirror, that is, the local normal bisects the angle
between the incident and reflected rays. The angles of incidence and reflection ¢ shown
on the figures are given by:

¢ = Leha L ; L (hyperbola)
(18.11.7)
b= g - w (ellipse)

To determine the aperture field on the aperture plane passing through F», we equate
the power within a solid angle dQ; = sin /1 dy;dx radiated from the feed, to the power
reflected within the cone dQ; = sin @>dy,dyx from the hyperbola, to the power passing
through the aperture dA = pdpdx:

1
dP = Uy (@1,x) d1 = Ux (Yo, x) dQ2; = 5|E11|2dA (18.11.8)
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where U, is the radiation intensity of the feed, and U, the intensity of the virtual feed.
The second of Egs. (18.11.8) may be solved as in Eq. (18.8.2) giving:

1
|Eql = oF (1 +cosyz)+2nUz (Y2, x) (18.11.9)

where F is the focal length of the parabola. From the first of Egs. (18.11.8), we find:

JUs = VU, sintpld(plz\/U—lecostpl—l

- (18.11.10)
sin @Ldy, ecosy +1

Inserting this into Eq. (18.11.9) and using Eqgs. (18.11.6), we obtain:

1 e—1
|Eal = o (e+ 1) (1 + cos 1) \2nU1 (w1, X) (18.11.11)

Comparing with Eq. (18.8.2), we observe that this is equivalent to a single parabolic
reflector with an effective focal length:

e+1
Fer = F
e—1

(18.11.12)

Thus, having a secondary reflector increases the focal length while providing a con-
venient location of the feed near the vertex of the parabola. Cassegrain antenna aperture
efficiencies are typically of the order of 0.65-0.70.

18.12 Lens Antennas

Dielectric lens antennas convert the spherical wave from the feed into a plane wave
exiting the lens. Fig. 18.12.1 shows two types of lenses, one with a hyperbolic and the
other with elliptic profile.

d
P A £ circle/ A B—»
R h P 7
R
F F
1
v vio B 7 G >
Ry -/ hyz
F hy—
0 F
- "\ A
hyperbola

ellipse aperture

Fig. 18.12.1 Lens antennas.

The surface profile of the lens is determined by the requirement that the refracted
rays all exit parallel to the lens axis. For example, for the lens shown on the left, the
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effective aperture plane is the right side AB of the lens. If this is to be the exiting
wavefront, then each point A must have the same phase, that is, the same optical path
length from the feed.

Taking the refractive index of the lens dielectric to be n, and denoting by R and h the
lengths FP and PA, the constant-phase condition implies that the optical length along
FPA be the same as that for FVB, that is,

R +nh = F + nhy (18.12.1)

But, geometrically we have R cos ¢ +h = F + hg. Multiplying this by n and subtract-
ing Eq. (18.12.1), we obtain the polar equation for the lens profile:

_ 3 _ F(n-1)
R(ncosy —1)=F(nh-1) = R_incosqj—l (18.12.2)

This is recognized from Eq. (18.11.3) to be the equation for a hyperbola with eccen-
tricity and focal length e = n and F; = F.

For the lens shown on the right, we assume the left surface is a circle of radius R
and we wish to determine the profile of the exiting surface such that the aperture plane
is again a constant-phase wavefront. We denote by R and h the lengths FA and PA.
Then, R = Ry + h and the constant-phase condition becomes:

R0+l’lh +d :RoJrnho (18.12.3)

where the left-hand side represents the optical path FPAB. Geometrically, we have
Rcosy +d = F and F = Ry + hy. Eliminating d and R, we find the lens profile:

Fi1-1y
R = 17” (18.12.4)
1- Zcosw

which is recognized to be the equation for an ellipse with eccentricity and focal length
e=1/nand F, = F.

In the above discussion, we considered only the refracted rays through the dielectric
and ignored the reflected waves. These can be minimized by appropriate antireflection
coatings.



