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Scope

◮ Energy harvesting wireless communication systems

◮ Analytical models that capture fundamental challenges

◮ Performance optimization taking into account:

◮ Intermittent nature of harvested energy

◮ Capacity and leakage of storage devices

◮ Complexity constraints
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Definitions

harvest
the act or process of gathering a crop

scavenge

to search for (anything usable) among discarded material

energy harvesting/scavenging (EH)

take advantage of previously “wasted” environmental energy
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Abraham-Louis Perrelet (1729-1826)

The self-winding pocket watch (1777)

“...15 minutes walking was necessary to wind the watch sufficiently for 8 days”
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Solar powered calculator

Introduced at the end of the 70’s
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Wireless EH Device (EHD)

◮ An EHD harvests energy from the environment to collect,
process and transmit/receive information

◮ The environment is a power reservoir: light, vibration, motion,
pressure, heat, radio, human activity

◮ Applications: autonomous networked systems where providing
line power or maintaining batteries is inconvenient

◮ Ad hoc, sensor, machine-to-machine networks

◮ Consumer electronics

◮ Structural monitoring

◮ Medical systems

◮ Homes, offices, factories, roadways, hospitals, humans, animals
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CraneTracker: monitoring the Grus Americana

◮ Sustainable, continental-scale information delivery during
migration (4000 km)

◮ Weight: < 120 gr, GPS: 2 samples/day, Compass: 0.5 Hz,
Latency: < 24 h, Autonomy: 5-7 years (!)

◮ Flexible solar panel, lithium polymer battery, 512 kB memory

Anthony et al., Sensing Through the Continent: Towards Monitoring Migratory Birds using Cellular Sensor

Networks, 2012
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EnOcean: building automation

◮ Wireless switch: operating energy generated by pressure

◮ TX power: 6 dBm, Range: 30 m indoor, 300 m outdoor

◮ Data rate: 125 kHz, packet duration: 1 ms

◮ Small probability of collision: simple MAC

EnOcean Technology - Energy Harvesting Wireless, White Paper, 2011
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MicroStrain 802.15.4 EH-Link
TM

network

◮ Onboard accelerometer, humidity and temperature sensor

◮ Measurement rate: 1 sample/hour to 2048 Hz

◮ Input voltage: ≥ 20 mV, TX power: 0 dBm, LOS range: 70 m

◮ Base station: node discovery, calibration, synchronization and
data collection.
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Enabling technologies 1: energy harvesters

Energy harvesting estimates*

Source Type µW/cm2

Vibration/motion
Human 4
Industry 100

Temperature difference
Human 25
Industry 103-104

Light
Indoor 10
Outdoor 104

RF
GSM 0.1
WiFi 0.001

◮ Same order of magnitude as carefully designed low-power
circuits typically consume

◮ Duty cycling, highly efficient sleep mode

*Raju and Grazier, ULP meets energy harvesting, White Paper, Texas Instruments, 2008
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Enabling technologies 1: energy harvesters

IDTechEx, Energy Harvesting and Storage, Cambridge 2009
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Enabling technologies 2: power converter

◮ Electrical output is unregulated,
cannot be used directly to
power electronic circuits

◮ Power converter: produce
regulated output voltage

◮ Main components: transformer,
switching converter

LTC3108*: VIN ≥ 20 mV, selectable VOUT

of 2.35, 3.3, 4.1, 5 V

*Salerno, Ultralow voltage EH for battery-free wireless sensors, LT Journal of Analog Innovation, 2010
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Enabling technologies 3: storage

Rechargeable batteries

◮ High energy density (large capacity)

◮ Wear-out fast with charge/discharge cycles

Super-capacitors

◮ High power density, large number of charge/discharge cycles

◮ Self-discharge, temperature-dependent equivalent series
resistance (ESR)

Solid-state batteries

◮ High energy density, large number of charge/discharge cycles,
minimal self-discharge, thin-film form, eco-friendly
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Enabling technologies 4: low-power electronics

◮ Ultra-low power microprocessors (µP)

◮ Low standby current, low active current, low operating
voltage, low pin leakage

◮ Low-power RF transceivers

◮ Energy consumption: µP with fast processing core

◮ Integration adds value: reduced package size and cost, fewer
losses
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EHD Operation

Pros

◮ Increased lifetime

◮ No battery replacement, minimal/no maintenance

◮ Ecological

Challenges

◮ Power is scarce (µW ∼ mW) and intermittent

◮ Storage limited and leaky

◮ Stringent constraints on size and complexity

Introduction 17/114



Paradigm shift

Ultimate promise

Self-sustainable, maintenance-free network of perpetually
communicating devices

Up to now

◮ Advances in EH, storage, µP technology... but there is a need
to integrate these solutions

◮ Holistic system design

energy efficiency → intelligent energy management
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Model

EH SE

µP

Sensor

Radio

Ambient

energy

piezoelec

solar

thermoelec

battery
capacitor

Typical EHD block diagram

µP

H(t)

I(t)

emax(t)

dmax

S(t)

D(t)

Mathematical model
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Energy management

Energy management policy

Rules that determine decisions of µP to activate switches at a
given time t

Goal
Optimize a utility function over a given time period

Solution depends on

◮ characteristics of H(t) and I(t)

◮ degree of knowledge of µP about H(t) and I(t)

◮ physical constraints
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Approaches

Offline optimization

µP knows values of H(t) and I(t) in advance at the µP for
duration of operation

Online optimization

µP knows past values of H(t) and I(t) but has only statistical
knowledge of their future values

Learning-theoretic optimization

µP learns characteristics of H(t) and I(t) and adapts policy
accordingly
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2. Offline Optimization

◮ Energy and data arrival processes are known in advance
◮ Deterministic processes (e.g. solar harvesters for given time of

the day and season of operation, vibration based harvester on
train tracks)

◮ Serves as a bound for the general problem

◮ Provides heuristics for low-complexity online algorithms

◮ No randomness

◮ Optimization problem
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Simplified Model

◮ Point-to-point data backlogged system

◮ Focus on transmission energy: long-range communication

◮ A rate-power function: r(P) bits/sec
◮ r(0) = 0

◮ r(·) is monotonically increasing

◮ Strictly concave

◮ Examples:
◮ Shannon capacity for AWGN channel: r(P) = 1

2 log
(

1 + P
N

)

◮ BPSK signalling with hard-decisions:

r(P) = 1 − h

(

Q

(

√

P
N

))
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Energy Efficient Communication

◮ Battery-limited system: Energy H0 available at t = 0

◮ Given r(·) and deadline T

◮ How many bits can you transmit?
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Energy Efficient Communication

◮ Battery-limited system: Energy H0 available at t = 0

◮ Given r(·) and deadline T

◮ How many bits can you transmit?

◮ Variable to optimize: Transmission power P(t) for t ∈ [0, T ]

◮ Optimization problem:

max
P(t),t∈[0,T ]

∫ T
0 r(P(t))dt

such that
∫ T

0 P(t) ≤ H0.
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Jensen’s inequality

Theorem (Jensen’s inequality)

Let φ(·) be a concave function on the real line, then

φ

(

∑n
i=1 aixi
∑n

j=1 aj

)

≥

∑n
i=1 aiφ(xi )
∑n

j=1 aj

,

with strict inequality if φ(·) is strictly concave.

x1 x2

φ(x)
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Jensen’s inequality in integral form

Theorem (Jensen’s inequality)

Let f : [a, b] → R be a non-negative real valued function, and φ(·)
be a concave function on the real line, then

φ

(

∫ b

a
f (t)dt

)

≥

∫ b

a

φ((b − a)f (t))

b − a
dt,

with strict inequality if φ(·) is strictly concave, a 6= b, and f is not

constant over the interval [a, b].
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Jensen’s inequality in integral form

Theorem (Jensen’s inequality)

Let f : [a, b] → R be a non-negative real valued function, and φ(·)
be a concave function on the real line, then

φ

(

∫ b

a
f (t)dt

)

≥

∫ b

a

φ((b − a)f (t))

b − a
dt,

with strict inequality if φ(·) is strictly concave, a 6= b, and f is not

constant over the interval [a, b].

f (t) =
P(t)

T
, a = 0, b = T , φ(·) = r(·)
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Energy efficient communication

r

(

∫ T

0

P(t)

T
dt

)

>

∫ T

0

r(P(t))

T
dt
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Energy efficient communication

r

(

∫ T

0

P(t)

T
dt

)

>

∫ T

0

r(P(t))

T
dt

T · r

(

H0

T

)

>

∫ T

0
r(P(t))dt
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Energy efficient communication

r

(

∫ T

0

P(t)

T
dt

)

>

∫ T

0

r(P(t))

T
dt

T · r

(

H0

T

)

>

∫ T

0
r(P(t))dt

◮ Constant power transmission is optimal!
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Energy efficient communication

r

(

∫ T

0

P(t)

T
dt

)

>

∫ T

0

r(P(t))

T
dt

T · r

(

H0

T

)

>

∫ T

0
r(P(t))dt

◮ Constant power transmission is optimal!

◮ T · r
(

H0
T

)

increases with T : Zero-power transmission is

optimal (well-known minimum energy-per-bit)
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Design principles for multiple energy packets

◮ Better to transmit over longer time periods (with low power)

◮ No silent periods

◮ Finish all available energy by deadline

◮ Constant power transmission between energy arrivals
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Design principles for multiple energy packets

◮ Better to transmit over longer time periods (with low power)

◮ No silent periods

◮ Finish all available energy by deadline

◮ Constant power transmission between energy arrivals

◮ Energy causality condition: Energy cannot be used before it
arrives
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Cumulative energy curves

◮ Harvested Energy Curve, H̄(t): Total energy harvested in
[0, t], i.e., H̄(t) =

∫ t
0 H(τ)dτ

◮ Transmitted Energy Curve, E (t): Total energy used in
[0, t], i.e., E (t) =

∫ t
0 P(τ)dτ
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Cumulative energy curves

◮ Harvested Energy Curve, H̄(t): Total energy harvested in
[0, t], i.e., H̄(t) =

∫ t
0 H(τ)dτ

◮ Transmitted Energy Curve, E (t): Total energy used in
[0, t], i.e., E (t) =

∫ t
0 P(τ)dτ

◮ Energy causality constraint: E (t) ≤ H̄(t) ∀t ∈ [0, T ]
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Cumulative energy curves

◮ Harvested Energy Curve, H̄(t): Total energy harvested in
[0, t], i.e., H̄(t) =

∫ t
0 H(τ)dτ

◮ Transmitted Energy Curve, E (t): Total energy used in
[0, t], i.e., E (t) =

∫ t
0 P(τ)dτ

◮ Energy causality constraint: E (t) ≤ H̄(t) ∀t ∈ [0, T ]

◮ Minimum energy curve, M̄(t): Total energy that must be
used by t, i.e., M̄(t) ≤ E (t)

◮ Admissible if M̄(t) ≤ E (t) ≤ H̄(t)
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Offline optimization problem

max
E(t),t∈[0,T ]

∫ T
0 r(E ′(t))dt

such that H̄(t) ≥ E (t) ≥ M̄(t), ∀t ∈ [0, T ],

en
er

gy

en
er

gy

timetime

H̄(t)
H̄(t)

E (t)
E (t)

M̄(t)M̄(t)
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Example 1: Limited battery capacity

time

en
er

gy
M̄(t)

H̄(t)

emax

◮ Battery capacity: emax

◮ Use energy for transmission rather than wasting:

H̄(t) − E (t) ≤ emax −→ E (t) ≥ H̄(t) − emax

i.e. M̄(t) = max
(

H̄(t) − emax , 0
)
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Example 2: Time-varying battery size

replacements

time

en
er

gy

M̄(t)

H̄(t)
emax (t)

◮ Battery size decreases with multiple discharges: emax (t)

M̄(t) = max
(

H̄(t) − emax (t), 0
)
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Example 3: Dying Batteries

t1 t2 t3 tN

e1

e1 + e2

eN

M̄(t)

H̄(t)

◮ N batteries (all full at t = 0)

◮ battery i has ei units of energy and dies at time ti

◮ Question: maximum data that can be transmitted until last
battery dies?
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Optimality Conditions

◮ E (t): admissible transmit energy curve

◮ S(t): straight line over [a, b] joining E (a) and E (b),
0 ≤ a < b ≤ T

◮ Let M̄(t) ≤ S(t) ≤ H̄(t) and S(t) 6= E (t)

◮ Construct:

Enew (t) =















E (t) t ∈ [0, a)

S(t) t ∈ [a, b]

E (t) t ∈ (b, T ]

◮ We have:

∫ T

0
r(E ′

new (t))dt >

∫ T

0
r(E ′(t))dt
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Optimality conditions

◮ Take any admissible curve E (t)

◮ Connect any two points with a straight line

◮ If it doesn’t violate admissibility constraints, replacing that
part with a straight line increases transmitted data!

a b t a b t

H̄(t)H̄(t)

M̄(t)M̄(t)

E (t) Enew (t)
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Behaviour of the optimal curve

Eopt(t): optimal transmitted energy curve
t0: any point at which transmission power changes

◮ at t0, E opt(t) intersects either H̄(t) or M̄(t)

◮ if Eopt(t0) = H̄(t0), then slope change must be positive

◮ if Eopt(t0) = M̄(t0), then slope change must be negative
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Interpretation

◮ No change in H̄(t) or M̄(t): constant power tx

◮ Increase tx power only when battery is empty

◮ Decrease tx power only when battery is full
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Uniqueness of the Optimal Curve

◮ Strictly concave rate function r(·)

◮ E (t) is an admissible transmitted energy curve

◮ No two points of E (t) that can be connected by a distinct
admissible straight line
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Uniqueness of the Optimal Curve

◮ Strictly concave rate function r(·)

◮ E (t) is an admissible transmitted energy curve

◮ No two points of E (t) that can be connected by a distinct
admissible straight line

Then, E (t) is unique and optimal

Offline framework 39/114



Shortest length

Optimal departure curve Eopt(t) has the shortest length among all
admissible curves. It minimizes the metric

length(E (t)) ,

∫ T

0

√

(1 + (E ′(t))2)dt

String visualization:

Et H̄(t)H̄(t)

M̄(t)M̄(t)
tt

E opt(t)
string
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Examples

N dying batteries Degrading battery
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Constructing E
opt(t)

◮ For (t0, α), E is the set of straight lines that remain
admissible for some duration, i.e., line L(t) s.t.
M̄(t) ≤ L(t) ≤ H̄(t) for t ∈ [t0, t0 + ǫ).

◮ Partition E into two:
◮ EH : lines that intersect first H̄(t),

◮ EM : lines that intersect first M̄(t).

◮ SH and SM are slopes of lines in EH and EM .

◮ Define β0 , inf SH = sup SM

◮ β0: optimal slope, L0: optimal line
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Constructing E
opt(t)

Let t0 = 0 in the first iteration.

1. Obtain β0 and L0

2. Obtain the first instance t1 s.t.
(a) L0(t1) = M̄(t1), or,
(b) L0(t1) = H̄(t1) or L0(t1) = H̄(t−

1 ).
Set E opt(t) = L0(t), t ∈ (t0, t1].

3. Terminate if t1 = T . If not, start with (t1, E opt(t1)) as
starting point.

t

M̄(t)

H̄t

Eopt (t)
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Algorithmic Construction
1. Packetized energy arrivals

2. N energy packets H0, . . . , HN−1 at times t0, . . . , tN−1

3. H̃i : total energy harvested just before ti
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Algorithmic Construction
1. Packetized energy arrivals

2. N energy packets H0, . . . , HN−1 at times t0, . . . , tN−1

3. H̃i : total energy harvested just before ti

4. Starting t = 0, consider line segments from (0, 0) to (ti , H̃i )

5. Choose the one with minimum slope

6. First transmission power: mini
H̃i

ti

7. Continue recursively

Offline framework 44/114



Joint Energy and Data Arrival

1. Both energy and data arrive in packets (Yang&Ulukus’12)

2. Both energy and data causality constraints

3. Assume unlimited battery

4. Minimize transmission time, or maximize remaining battery by
a deadline
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Enter Fading

◮ Channel gain (φ) changes over energy harvesting epochs

◮ Rate-power function: r(t) = log (1 + φ(t)P(t))

◮ Maximize transmitted data by T

◮ Offline optimization: channel states are known in advance
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Example
◮ Battery operated model: H̄(t) = H̄(0) = 2H

◮ Two epochs of equal length

◮ First epoch has better channel: φ1 > φ2

◮ Problem: power allocation over parallel Gaussian channels

◮ Solution: Waterfilling

T/2 T

1/φ1

1/φ2

P1

P2

2H
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Energy Harvesting

◮ Waterfilling allocates more than half to first epoch

◮ What if that much energy is not yet available?

T/2 T

1/φ1

1/φ2

P ′

P ′

H H
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Limited Battery Capacity emax

◮ Waterfilling solution ignores the finite SE capacity emax

◮ Assume: φ2 > φ1

◮ We can allocate at most emax to the second epoch

T/2 T

1/φ1

1/φ2

P2

P1

H H

(a)

T/2 T

1/φ1

1/φ2

P ′

P ′

H H

emax

(b)
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Max Throughput over a Fading Channel

φt

H̄t
tt0 t1 t2 t3 t4 t5 t6 t7 t8t9 t10

◮ N epochs

◮ Channel gains: φ1, . . . , φN

◮ Durations: τ1, . . . , τN , where τi = ti − ti−1

◮ Transmission power in each epoch: pi
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A less intuitive formulation

max
pi

N
∑

i=1

τi

2
log(1 + φipi)

s.t.
i
∑

j=1

τjpj ≤
i
∑

j=1

Hj−1, i = 1, ..., N,

i+1
∑

j=1

Hj−1 −
i
∑

j=1

τjpj ≤ emax , i = 1, ..., N,

0 ≤ pi , i = 1, ..., N.
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A less intuitive formulation

max
pi

N
∑

i=1

τi

2
log(1 + φipi)

s.t.
i
∑

j=1

τjpj ≤
i
∑

j=1

Hj−1, i = 1, ..., N,

i+1
∑

j=1

Hj−1 −
i
∑

j=1

τjpj ≤ emax , i = 1, ..., N,

0 ≤ pi , i = 1, ..., N.

Convex optimization problem!
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Lagrangian

L =
N
∑

i=1

τi

2
log(1 + φipi) −

N
∑

i=1

λi





i
∑

j=1

τjpj −
i
∑

j=1

Hj−1





−
N
∑

i=1

µi





i+1
∑

j=1

Hj−1 −
i
∑

j=1

τjpj − emax



+
N
∑

i=1

ηipi
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Lagrangian

L =
N
∑

i=1

τi

2
log(1 + φipi) −

N
∑

i=1

λi





i
∑

j=1

τjpj −
i
∑

j=1

Hj−1





−
N
∑

i=1

µi





i+1
∑

j=1

Hj−1 −
i
∑

j=1

τjpj − emax



+
N
∑

i=1

ηipi

Complementary slackness conditions:

λi





i
∑

j=1

τjpj −
i
∑

j=1

Hj−1



 = 0, ∀i

µi





i+1
∑

j=1

Hj−1 −
i
∑

j=1

τjpj − emax



 = 0, ∀i

ηipi = 0, ∀i
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Lagrangian

Optimal power allocation:

p∗
j =

[

υj −
1

φj

]+

υj =
1

∑N
i=j λi −

∑N
i=j µi

.
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Lagrangian

Optimal power allocation:

p∗
j =

[

υj −
1

φj

]+

υj =
1

∑N
i=j λi −

∑N
i=j µi

.

If emax = ∞:

◮ µj = 0, ∀j

◮ Since λj ≥ 0, we have υi+1 ≥ υi

◮ Optimal water level is monotonically increasing!

◮ If φi is constant, optimal power is monotonically increasing
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Directional Waterfilling

H3
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Directional Waterfilling

emax = ∞

H0 H1 H2 H3 H4

t0 t1 t2 t3 t4 t5 t6 T
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Directional Waterfilling

emax is finite

H0 H1 H2 H3 H4

t0 t1 t2 t3 t4 t5 t6 T
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Directional Waterfilling vs. Shortest Path

H0 H4H2H1 H3

causality no overflow
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Processing Energy Costs

◮ Processing circuitry consumes energy:
◮ Static energy drawn by the transmitter,

◮ Energy consumed for coding/signal processing (A/D
conversion, filters, mixers, etc.)

◮ Also: protocol overhead, power amplifier inefficiencies

◮ For sensors, even the startup energy of the transceiver may
exceed transmission energy
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Processing Energy Costs

◮ ǫ joules per unit time: only when transmitting

◮ Discrete events: t0 = 0 < t1 < · · · < tN−1 < T

◮ Duration of epoch i : τi , ti − ti−1

◮ Energy harvest at ti : Hi

◮ Channel state in epoch i : φi

◮ Battery capacity: emax

◮ Rate-power function: 1
2 log(1 + φ(t)p(t))
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Optimization

◮ Transmission power in each epoch: pi
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Optimization

◮ Transmission power in each epoch: pi

◮ Transmission time in each epoch: θi
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Optimization

◮ Transmission power in each epoch: pi

◮ Transmission time in each epoch: θi

max
pi ,Θi

N
∑

i=1

Θi

2
log(1 + φipi)

s.t. 0 ≤
i
∑

j=1

(Hj−1 − Θj(pj + ǫ)), i = 1, ..., N,

i+1
∑

j=1

Hj−1 −
i
∑

j=1

Θj(pj + ǫ) ≤ emax , i = 1, ..., N,

0 ≤ Θi ≤ τi , and 0 ≤ pi , i = 1, ..., N.
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Optimization

◮ Transmission power in each epoch: pi

◮ Transmission time in each epoch: θi

max
pi ,Θi

N
∑

i=1

Θi

2
log(1 + φipi)

s.t. 0 ≤
i
∑

j=1

(Hj−1 − Θj(pj + ǫ)), i = 1, ..., N,

i+1
∑

j=1

Hj−1 −
i
∑

j=1

Θj(pj + ǫ) ≤ emax , i = 1, ..., N,

0 ≤ Θi ≤ τi , and 0 ≤ pi , i = 1, ..., N.

◮ Non-convex optimization
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Convexification

◮ αi , Θipi : energy consumed by power amplifier in epoch i
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Convexification

◮ αi , Θipi : energy consumed by power amplifier in epoch i

max
αi ,Θi

N
∑

i=1

Θi

2
log

(

1 +
φiαi

Θi

)

s.t. 0 ≤
i
∑

j=1

(Hj−1 − αj − ǫΘj), i = 1, ..., N,

i+1
∑

j=1

Hj−1 −
i
∑

j=1

(αj + ǫΘj) ≤ emax , i = 1, ..., N,

0 ≤ Θi ≤ τi , and 0 ≤ αi , i = 1, ..., N.
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i+1
∑

j=1

Hj−1 −
i
∑

j=1

(αj + ǫΘj) ≤ emax , i = 1, ..., N,

0 ≤ Θi ≤ τi , and 0 ≤ αi , i = 1, ..., N.

◮ Θi

2 log(1 + φi αi

Θi
): perspective of 1

2 log(1 + φiαi)

◮ Strictly concave function

◮ Perspective operation preserves concavity

◮ Convex optimization problem
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Optimal Solution

◮ Each epoch has a threshold value: υ∗
i

H0 H1

t0 t1 t2 t3 t4 t5 t6 T
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Optimal Solution

◮ Glue Pouring

◮ Sleep periods

H0

H1

H2

t0 t1 t2 t3 t4 T
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Optimal Solution

H0 H2

H3

t0 t1 t2 t3 t4 T
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Effect of Processing Energy Cost
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Future Directions

◮ More realistic models for processing cost: rate/bandwidth
dependence

◮ Cost for memory

◮ Cost of sleep/wake cycles

◮ Battery level dependent sleep/wake optimization
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Offline framework - Conclusions

◮ Offline optimization: all processes are known in advance

◮ Deterministic optimization problem

◮ A general upper bound on the performance

◮ Provides heuristics, general principles

◮ Studied progressively more realistic models

◮ Many more open problems
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Setting

◮ H(t) and I(t) are not known or accurately predictable

◮ More appropriate to model H(t) and I(t) as random processes

◮ µP must make decisions in online fashion

◮ Knowledge of past values of H(t) and I(t) and statistical
description of future values

◮ Goal: optimization of expected outcome of decisions
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Tools

◮ Markov decision processes: discrete-time stochastic control

◮ Policy: a set of decision rules based on system state

◮ Can be solved numerically with well known algorithms (linear
programming, value iteration, policy iteration)

◮ But: complexity explodes with size of state space, no insight!

◮ We can also use offline heuristics in online context: ignores
statistics

◮ A good compromise: appropriately optimize simple
“energy-balancing” policies
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System Model

µP

Hk

Ik = 1

emax

Sk

Vk

◮ Slotted-time: slot k is interval [kτ, (k + 1)τ), k ∈ Z
+, τ > 0

◮ Time k: new data packet of importance Vk ≥ 0; {Vk} are iid.

◮ TX: reward Vk ; consume one energy quantum

◮ DROP: no reward; no energy consumed
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System Model

µP

Hk

Ik = 1

emax

Sk

Vk

◮ EH process: Hk iid Bernoulli with mean β ∈ (0, 1)

◮ Energy level evolution:

Sk+1 = min {Sk − Qk + Hk , emax}

◮ Transmit: Qk = 1; drop: Qk = 0
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Why is this scenario interesting?

General

◮ Temperature sensor: importance ↔ temperature

◮ Relay: importance ↔ priority

◮ Rate adaptation to fading: importance ↔ achievable rate

Representative

◮ Intermittence of harvested energy

◮ Basic energy management question

◮ Each slot corresponds to one cycle
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System state and policy definition

◮ System state at time k: (Sk , Vk) ∈ S × R
+, where

S = {0, . . . , emax} is energy level set

◮ Energy outage: Sk = 0

◮ Energy overflow: (Sk = emax) ∩ (Hk = 1) ∩ (Qk = 0)

◮ Policy µ determines Qk ∈ {0, 1}

◮ µ(1; s, v): prob of TX

◮ µ(0; s, v) = 1 − µ(1; s, v): prob of DROP

◮ Formally: µ probability measure on action space {0, 1}
parametrized by state (Sk , Vk)
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Optimization problem

Long-term average reward per slot

G(µ, s0, v0) = lim
K→∞

inf
1

K
E

[

K−1
∑

k=0

QkVk

∣

∣

∣

∣

∣

S0 = s0, V0 = v0

]

Find optimal policy

µ∗ = arg max
µ

G(µ, s0, v0)
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Threshold policies

◮ µ∗ has a threshold structure

µ∗(1; s, v) =

{

1 v ≥ vth(s)
0 v < vth(s)

◮ Average TX prob

η(s) =

∫ +∞

vth(s)
fV (ν) dν = F̄V (vth(s))

◮ Average reward = g(η(s))

g(x) =

∫ +∞

F̄
−1
V

(x)
ν fV (ν) dν, x ∈ [0, 1]

◮ g(x) is strictly increasing and concave
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Admissible policies

◮ µ ↔ vth(·) ↔ η(·)

◮ Transition probs of Markov chain {Sk} depend only on η

◮ Admissible policy: unique steady-state distribution

πη(s), s ∈ S

◮ For admissible policy η, the long-term reward is

G(η) =
emax
∑

s=0

πη(s)g(η(s))
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Markov decision process

◮ Optimization problem becomes

η∗ = arg max
η

G(η)

◮ (Sk , Vk , Qk) is a Markov Decision Process (MDP)

◮ Optimal policy can be easily evaluated numerically

◮ We seek properties of the optimal policy

◮ Approach: evaluate analytically πη(s) (and G(η))
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A bound

◮ By Jensen’s inequality

G(η) =
emax
∑

s=0

πη(s)g(η(s)) < g

(

emax
∑

s=0

πη(s)η(s)

)

◮ In addition

emax
∑

s=0

πη(s)η(s) ≤ β

◮ Therefore

G(η) < g

(

emax
∑

s=0

πη(s)η(s)

)

≤ g(β)

◮ Bound achievable by Balanced Policy for emax → ∞
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Example: emax = 1

0 1β̄

β

β̄η(1)

βη(1) + η(1)

πη(0) =
β̄η(1)

β + β̄η(1)

πη(1) =
β

β + β̄η(1)

G(η) =
β

β + β̄η(1)
g(η(1))

◮ η∗(1) is the unique solution of ∂G(η)/∂η(1) = 0
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Properties of optimal policy: emax > 1 [MicheITA12]

0 1
0

A

B

C

D

E

ηL ηUβ

g(β)
β

g(β)

g
(η
)

η

◮ η∗(s) is strictly increasing

◮ η∗(s) ∈ (ηL, ηU), ∀s ∈ S \ {0}

◮ ηL ∈ (0, β), ηU ∈ (β, 1) solve

g(ηL) + ηLg ′(ηL) =
g(β)

β

g(ηU ) − ηUg ′(ηU) = g(β)
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Interpretation

◮ The more energy available in the battery, the larger the
incentive to transmit

◮ ηL and ηU consequence of concavity of g(η)

◮ If η is too low, the policy is too conservative

◮ If η is too high, returns are diminishing
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Example: rate adaptation for Rayleigh fading

Vk = ln(1 + SNRHk)

g(η(s)) =

∫ +∞

hth(s)
ln(1 + SNRh) e

−h
dh

η(s) =

∫ +∞

hth(s)
e

−h
dh = e

−hth(s)

Policies

◮ Optimal Policy (OP): solved for numerically

◮ Balanced Policy (BP): η(s) = β ∀s ∈ S − {0}

◮ Greedy Policy (GP): η(s) = 1 ∀s ∈ S − {0}

◮ Low Complexity Policy (LCP): based on proved properties
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Average transmission probability
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Steady-state distribution
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Reward
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LCP performs very close to optimal. BP asymptotically optimal
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Improvement over BP
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Take-away points

◮ The reward of the BP is

G(ηBP) =
1

1 + β̄
emax

g(β)

◮ For emax/β̄ ≥ 3, G(ηBP)/g(β) ≥ 0.75

◮ Roughly: if I can store enough energy for 3 TX pulses, a
balanced policy performs very well

◮ Why: energy arrivals are iid! Outage and overflow occur, but
not for prolonged periods.

◮ Insight from OP: increase (decrease) TX prob as stored
energy level increases (decreases)
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Learning Theoretic Framework

◮ Energy sources are sporadic
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Learning Theoretic Framework

◮ Energy sources are sporadic

◮ In many cases knowing energy arrivals in advance (offline
optimization) not possible

◮ Even the statistics depend on sensor location, time of day or
season

◮ Online/offline require calibrating sensor operation before
deployment

◮ Why not learn harvesting/ data arrival/ channel processes,
and adapt accordingly?
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System Model

◮ Point to point system

◮ Transmitter has a rechargeable battery of size emax .

◮ Ht : harvested energy at timeslot t

◮ It : size of data packet arriving at timeslot t

◮ Channel state : φt

◮ Decision made at each timeslot: transmit or drop incoming
packet

ChannelTransmitter Receiver

Ht

St

emax

It

φt
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System Model

◮ Energy/ data arrivals and channel state Markov processes

◮ At each timeslot sensor dies with probability 1 − γ.

◮ Either transmit (Xt = 1) or drop (Xt = 0) a packet
◮ No data buffer

◮ (It , φt) pair requires Et energy units

◮ Energy constraints:
◮ Available energy is limited: XnEt ≤ St .

◮ Battery has finite capacity: St+1 = min{St − XtEt +Ht , emax}.
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Optimization problem

Objective: Maximize average total data within activation time:

max
{Xi }∞

i=0

lim
N→∞

E

[

N
∑

t=0

γtXt It

]

,

s.t. St+1 = min{St − XtEt + Ht , emax },

XtEt ≤ St ,

Xt ∈ {0, 1}
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Optimization methods

Assumptions Solution methods

Offline
Non-causal knowledge

Branch and bound
Finite horizon optimization

Online
Causal knowledge of current values

Dynamic Prog.
Statistical knowledge of the Markov processes

Infinite horizon optimization

Learning
Causal knowledge of current values

Reinforcement Learn.
Feedback from the receiver (i.e., ACK)

Infinite horizon optimization
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Learning Theoretic Optimization

We use Q-learning algorithm (a Reinforcement Learning
technique):

◮ Q-learning by performing actions and observing their rewards
arrives at an optimal policy which maximizes the expected
discounted sum reward accumulated over time

◮ Q-learning assumes
◮ State is known causally

◮ The immediate reward value is known after taking an action

◮ Q-learning estimates iteratively the action-value function
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Numerical Results - Parameters

◮ Two state EH and data arrival process: It = {1, 2} and
Ht = {0, 2}.

◮ Channel can be either in good or in bad state (i.e. the
energy required to tx a packet is doubled in the bad state).

◮ pH : prob. of harvesting 2 energy units in epoch n + 1 given
that 2 energy are harvested in epoch n

◮ Upperbound: in the LP-Offline the transmitter can partially
transmit packets and has non causal knowledge.

◮ Lowerbound: in the Greedy algorithm the transmitter
transmits a packet whenever there is enough energy in the
battery.
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Q−learning convergence
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Energy harvesting
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Learning theoretic framework - Conclusions

◮ Learning theoretic framework: Appropriate for
time-varying/unknown energy sources

◮ Sensor learns harvesting/data arrival/channel state parameters
and adapts transmission policy

◮ Future directions:
◮ Distributed learning for multi-user systems

◮ Partially observable models/ Bandit problems
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In summary

Offline approach

◮ Well predictable environments, performance upper bounds

◮ Tools: cumulative curves, convex optimization

Online approach

◮ Random (stationary) enviroments, design based on statistical
information and knowledge of past values

◮ Tools: stochastic optimization, steady-state analysis

Learning-theoretic approach

◮ Unknown environments, very limited information on energy
and data processes

◮ Tools: Reinforcement learning
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What next?
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EH networks

◮ Hard to study: we saw this even for simple cases

◮ Offline results for broadcast, multiple access, interference
channels

◮ General networks? Local information?

◮ Characteristics of a multi-agent system

◮ Additional parameter: energy sharing/transfer, simultaneous
transmission of energy and information

◮ Interesting resource allocation problems in many layers of the
stack
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Bridging theory and practice

◮ Measurement campaigns for EH models [Gorla11]

◮ Implementation/testing of energy management algorithms in
prototypes: Columbia’s EnHants project [Gorla11]

◮ Realistic models that “capture” key characteristics of
underlying circuitry

◮ Realistic storage models: e.g., “degradation-aware” policies
[MicheInf13]
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MAC Protocols

◮ MAC protocols for wireless sensor networks typically designed
for maximum network lifetime

◮ EH networks: not energy-limited

◮ Goal: energy neutral MAC protocol design
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MAC Protocols

◮ MAC protocols for wireless sensor networks typically designed
for maximum network lifetime

◮ EH networks: not energy-limited

◮ Goal: energy neutral MAC protocol design

◮ EnOcean Alliance: ALOHA-based

◮ Intel WISP: EPC Class-1 Generation-2 (similar to slotted
ALOHA)

◮ : Need protocols adapted to EH sensors
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MAC Protocols

◮ Energy sources are correlated: best-effort policies will lead to
collisions

◮ Correlation in harvested energy can provide coordination

◮ EH processes can be asymmetrical over network

◮ Adapt ALOHA, framed-ALOHA, dynamic framed-ALOHA to
EH networks [Iannello12], [MicheICC13]
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Standards and Market

◮ EnOcean Wireless Standard (ISO/IEC 14543-3-10): first
standard optimized for ultra-low power and EH systems

◮ Standardization will aid EH market development: forecasted
to 1894.87 million dollars by 2017*

*Global Forecast and Analysis of EH Market (2012-2017), marketsandmarkets.com,

August 2012
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Closing remarks

◮ An exciting research field

◮ Many open questions at the intersection of algorithm, circuit
and network design
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THANK YOU!
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