Energy Harvesting Communication Network Design

Deniz Gündüz

Imperial College London

European School of Antennas (ESoA) Barcelona, Spain 12 Nov. 2015

Scope

- Energy harvesting wireless communication systems
- Analytical models that capture fundamental challenges
- Performance optimization taking into account:
 - Intermittent nature of harvested energy
 - Capacity and leakage of storage devices
 - Complexity constraints

Organization

- 1. Introduction
- 2. Offline optimization framework
- 3. Online optimization framework
- 4. Learning theoretic framework
- 5. Conclusions

Table of Contents

1. Introduction

2. Offline optimization framework

3. Online optimization framework

4. Learning theoretic framework

5. Conclusions

Definitions

harvest

the act or process of gathering a crop

scavenge

to search for (anything usable) among discarded material

energy harvesting/scavenging (EH)

take advantage of previously "wasted" environmental energy

Abraham-Louis Perrelet (1729-1826)

The self-winding pocket watch (1777)

"...15 minutes walking was necessary to wind the watch sufficiently for 8 days"

Solar powered calculator

Introduced at the end of the 70's

Introduction

Wireless EH Device (EHD)

- An EHD harvests energy from the environment to collect, process and transmit/receive information
- The environment is a power reservoir: light, vibration, motion, pressure, heat, radio, human activity
- Applications: autonomous networked systems where providing line power or maintaining batteries is inconvenient
 - Ad hoc, sensor, machine-to-machine networks
 - Consumer electronics
 - Structural monitoring
 - Medical systems
 - ► Homes, offices, factories, roadways, hospitals, humans, animals

CraneTracker: monitoring the Grus Americana

- Sustainable, continental-scale information delivery during migration (4000 km)
- ▶ Weight: < 120 gr, GPS: 2 samples/day, Compass: 0.5 Hz, Latency: < 24 h, Autonomy: 5-7 years (!)</p>
- ► Flexible solar panel, lithium polymer battery, 512 kB memory

Anthony et al., Sensing Through the Continent: Towards Monitoring Migratory Birds using Cellular Sensor Networks, 2012

Introduction

EnOcean: building automation

- Wireless switch: operating energy generated by pressure
- ► TX power: 6 dBm, Range: 30 m indoor, 300 m outdoor
- ► Data rate: 125 kHz, packet duration: 1 ms
- Small probability of collision: simple MAC

EnOcean Technology - Energy Harvesting Wireless, White Paper, 2011

MicroStrain 802.15.4 EH-Link[™] network

- Onboard accelerometer, humidity and temperature sensor
- ▶ Measurement rate: 1 sample/hour to 2048 Hz
- ► Input voltage: ≥ 20 mV, TX power: 0 dBm, LOS range: 70 m
- Base station: node discovery, calibration, synchronization and data collection.

Enabling technologies 1: energy harvesters

Source	Туре	$\mu { m W/cm^2}$
Vibration/motion	Human	4
	Industry	100
Temperature difference	Human	25
	Industry	$10^3 - 10^4$
Light	Indoor	10
	Outdoor	10 ⁴
RF	GSM	0.1
	WiFi	0.001

Energy harvesting estimates*

- Same order of magnitude as carefully designed low-power circuits typically consume
- Duty cycling, highly efficient sleep mode

 * Raju and Grazier, ULP meets energy harvesting, White Paper, Texas Instruments, 2008

Enabling technologies 1: energy harvesters

IDTechEx, Energy Harvesting and Storage, Cambridge 2009

Enabling technologies 2: power converter

- Electrical output is unregulated, cannot be used directly to power electronic circuits
- Power converter: produce regulated output voltage
- Main components: transformer, switching converter

$$\label{eq:LTC3108} \begin{split} \text{LTC3108}^*: \ V_{\rm IN} \geq & \text{20 mV, selectable} \ V_{\rm OUT} \\ \text{of 2.35, 3.3, 4.1, 5 V} \end{split}$$

*Salerno, Ultralow voltage EH for battery-free wireless sensors, LT Journal of Analog Innovation, 2010

Enabling technologies 3: storage

Rechargeable batteries

- High energy density (large capacity)
- ► Wear-out fast with charge/discharge cycles

Super-capacitors

- ► High power density, large number of charge/discharge cycles
- Self-discharge, temperature-dependent equivalent series resistance (ESR)

Solid-state batteries

High energy density, large number of charge/discharge cycles, minimal self-discharge, thin-film form, eco-friendly Enabling technologies 4: low-power electronics

- Ultra-low power microprocessors (μP)
- Low standby current, low active current, low operating voltage, low pin leakage
- ► Low-power RF transceivers
- Energy consumption: μP with fast processing core
- Integration adds value: reduced package size and cost, fewer losses

EHD Operation

Pros

- Increased lifetime
- ► No battery replacement, minimal/no maintenance
- Ecological

Challenges

- Power is scarce ($\mu W \sim mW$) and intermittent
- Storage limited and leaky
- Stringent constraints on size and complexity

Paradigm shift

Ultimate promise

Self-sustainable, maintenance-free network of perpetually communicating devices

Up to now

- ► Advances in EH, storage, µP technology... but there is a need to integrate these solutions
- Holistic system design

energy efficiency \rightarrow intelligent energy management

Model

Typical EHD block diagram

Mathematical model

Energy management

Energy management policy

Rules that determine decisions of $\mu \mathsf{P}$ to activate switches at a given time t

Goal

Optimize a utility function over a given time period

Solution depends on

- characteristics of H(t) and I(t)
- degree of knowledge of μP about H(t) and I(t)
- physical constraints

Approaches

Offline optimization

 μ P knows values of H(t) and I(t) in advance at the μ P for duration of operation

Online optimization

 μ P knows past values of H(t) and I(t) but has only statistical knowledge of their future values

Learning-theoretic optimization

 μP learns characteristics of H(t) and I(t) and adapts policy accordingly

Table of Contents

1. Introduction

2. Offline optimization framework

3. Online optimization framework

4. Learning theoretic framework

5. Conclusions

2. Offline Optimization

- ► Energy and data arrival processes are known in advance
 - Deterministic processes (e.g. solar harvesters for given time of the day and season of operation, vibration based harvester on train tracks)
 - Serves as a bound for the general problem
 - Provides heuristics for low-complexity online algorithms
- No randomness
- Optimization problem

Simplified Model

- Point-to-point data backlogged system
- ► Focus on transmission energy: long-range communication
- ► A rate-power function: r(P) bits/sec
 - ▶ r(0) = 0
 - $r(\cdot)$ is monotonically increasing
 - Strictly concave
- Examples:
 - ▶ Shannon capacity for AWGN channel: $r(P) = \frac{1}{2} \log \left(1 + \frac{P}{N}\right)$

• BPSK signalling with hard-decisions:

$$r(P) = 1 - h\left(Q\left(\sqrt{\frac{P}{N}}\right)\right)$$

- Battery-limited system: Energy H_0 available at t = 0
- Given $r(\cdot)$ and deadline T
- How many bits can you transmit?

- Battery-limited system: Energy H_0 available at t = 0
- Given $r(\cdot)$ and deadline T
- How many bits can you transmit?
- ▶ Variable to optimize: Transmission power P(t) for $t \in [0, T]$
- Optimization problem:

$$\begin{array}{ll} \max_{P(t),t\in[0,T]} & \int_0^T r(P(t)) dt \\ \text{such that} & \int_0^T P(t) \le H_0. \end{array}$$

Jensen's inequality

Theorem (Jensen's inequality)

Let $\phi(\cdot)$ be a concave function on the real line, then

$$\phi\left(\frac{\sum_{i=1}^n a_i x_i}{\sum_{j=1}^n a_j}\right) \geq \frac{\sum_{i=1}^n a_i \phi(x_i)}{\sum_{j=1}^n a_j},$$

with strict inequality if $\phi(\cdot)$ is strictly concave.

Jensen's inequality in integral form

Theorem (Jensen's inequality)

Let $f : [a, b] \to \mathbb{R}$ be a non-negative real valued function, and $\phi(\cdot)$ be a concave function on the real line, then

$$\phi\left(\int_a^b f(t)dt\right) \geq \int_a^b \frac{\phi((b-a)f(t))}{b-a}dt,$$

with strict inequality if $\phi(\cdot)$ is strictly concave, $a \neq b$, and f is not constant over the interval [a, b].

Jensen's inequality in integral form

Theorem (Jensen's inequality)

Let $f : [a, b] \to \mathbb{R}$ be a non-negative real valued function, and $\phi(\cdot)$ be a concave function on the real line, then

$$\phi\left(\int_{a}^{b}f(t)dt\right)\geq\int_{a}^{b}\frac{\phi((b-a)f(t))}{b-a}dt,$$

with strict inequality if $\phi(\cdot)$ is strictly concave, $a \neq b$, and f is not constant over the interval [a, b].

$$f(t) = \frac{P(t)}{T}, a = 0, b = T, \phi(\cdot) = r(\cdot)$$

 $r\left(\int_0^T \frac{P(t)}{T} dt\right) > \int_0^T \frac{r(P(t))}{T} dt$

 $r\left(\int_0^T \frac{P(t)}{T} dt\right) > \int_0^T \frac{r(P(t))}{T} dt$

$$T \cdot r\left(\frac{H_0}{T}\right) > \int_0^T r(P(t))dt$$

$$r\left(\int_0^T \frac{P(t)}{T} dt\right) > \int_0^T \frac{r(P(t))}{T} dt$$

$$T \cdot r\left(\frac{H_0}{T}\right) > \int_0^T r(P(t))dt$$

Constant power transmission is optimal!

$$r\left(\int_0^T \frac{P(t)}{T} dt\right) > \int_0^T \frac{r(P(t))}{T} dt$$

$$T \cdot r\left(\frac{H_0}{T}\right) > \int_0^T r(P(t))dt$$

- Constant power transmission is optimal!
- ► $T \cdot r\left(\frac{H_0}{T}\right)$ increases with T: Zero-power transmission is optimal (well-known minimum energy-per-bit)

Design principles for multiple energy packets

- ▶ Better to transmit over longer time periods (with low power)
- No silent periods
- ► Finish all available energy by deadline
- Constant power transmission between energy arrivals

Design principles for multiple energy packets

- ▶ Better to transmit over longer time periods (with low power)
- No silent periods
- ► Finish all available energy by deadline
- Constant power transmission between energy arrivals
- Energy causality condition: Energy cannot be used before it arrives

Cumulative energy curves

- ► Harvested Energy Curve, $\bar{H}(t)$: Total energy harvested in [0, t], i.e., $\bar{H}(t) = \int_0^t H(\tau) d\tau$
- ► Transmitted Energy Curve, E(t): Total energy used in [0, t], i.e., $E(t) = \int_0^t P(\tau) d\tau$
Cumulative energy curves

- ► Harvested Energy Curve, $\bar{H}(t)$: Total energy harvested in [0, t], i.e., $\bar{H}(t) = \int_0^t H(\tau) d\tau$
- ► Transmitted Energy Curve, E(t): Total energy used in [0, t], i.e., $E(t) = \int_0^t P(\tau) d\tau$
- ► Energy causality constraint: $E(t) \le \overline{H}(t) \ \forall t \in [0, T]$

Cumulative energy curves

- ► Harvested Energy Curve, $\bar{H}(t)$: Total energy harvested in [0, t], i.e., $\bar{H}(t) = \int_0^t H(\tau) d\tau$
- ► Transmitted Energy Curve, E(t): Total energy used in [0, t], i.e., $E(t) = \int_0^t P(\tau) d\tau$
- ► Energy causality constraint: $E(t) \le \overline{H}(t) \ \forall t \in [0, T]$
- ► Minimum energy curve, M
 (t): Total energy that must be used by t, i.e., M
 (t) ≤ E(t)
- Admissible if $\overline{M}(t) \leq E(t) \leq \overline{H}(t)$

Offline optimization problem

 $\begin{array}{ll} \max_{E(t),t\in[0,T]} & \int_0^T r(E'(t))dt \\ \text{such that} & \bar{H}(t) \geq E(t) \geq \bar{M}(t), \forall t \in [0,T], \end{array}$

Example 1: Limited battery capacity

- ► Battery capacity: *e_{max}*
- ► Use energy for transmission rather than wasting:

$$ar{H}(t) - E(t) \leq e_{max} \longrightarrow E(t) \geq ar{H}(t) - e_{max}$$

i.e. $ar{M}(t) = \max\left(ar{H}(t) - e_{max}, 0
ight)$

Offline framework

Example 2: Time-varying battery size

• Battery size decreases with multiple discharges: $e_{max}(t)$

$$\bar{M}(t) = \max\left(\bar{H}(t) - e_{max}(t), 0\right)$$

Offline framework

Example 3: Dying Batteries

- N batteries (all full at t = 0)
- ▶ battery *i* has *e_i* units of energy and dies at time *t_i*
- Question: maximum data that can be transmitted until last battery dies?

Optimality Conditions

- E(t): admissible transmit energy curve
- S(t): straight line over [a, b] joining E(a) and E(b),
 0 ≤ a < b ≤ T
- ▶ Let $\bar{M}(t) \leq S(t) \leq \bar{H}(t)$ and $S(t) \neq E(t)$
- ► Construct:

$$E_{new}(t) = egin{cases} E(t) & t \in [0,a) \ S(t) & t \in [a,b] \ E(t) & t \in (b,T] \end{cases}$$

We have:

$$\int_0^T r(E_{new}'(t))dt > \int_0^T r(E'(t))dt$$

Optimality conditions

- Take any admissible curve E(t)
- Connect any two points with a straight line
- If it doesn't violate admissibility constraints, replacing that part with a straight line increases transmitted data!

Behaviour of the optimal curve

 $E_{opt}(t)$: optimal transmitted energy curve t_0 : any point at which transmission power changes

- at t_0 , $E^{opt}(t)$ intersects either $\overline{H}(t)$ or $\overline{M}(t)$
- if $E_{opt}(t_0) = \bar{H}(t_0)$, then slope change must be positive
- if $E_{opt}(t_0) = \overline{M}(t_0)$, then slope change must be negative

Interpretation

- No change in $\overline{H}(t)$ or $\overline{M}(t)$: constant power tx
- Increase tx power only when battery is empty
- ► Decrease tx power only when battery is full

Uniqueness of the Optimal Curve

- Strictly concave rate function $r(\cdot)$
- E(t) is an admissible transmitted energy curve
- ► No two points of E(t) that can be connected by a distinct admissible straight line

Uniqueness of the Optimal Curve

- Strictly concave rate function $r(\cdot)$
- E(t) is an admissible transmitted energy curve
- ► No two points of E(t) that can be connected by a distinct admissible straight line

Then, E(t) is unique and optimal

Shortest length

Optimal departure curve $E_{opt}(t)$ has the shortest length among all admissible curves. It minimizes the metric

$$length(E(t)) riangleq \int_0^T \sqrt{(1+(E'(t))^2)} dt$$

String visualization:

Examples

N dying batteries

Degrading battery

Constructing $E^{opt}(t)$

- ► For (t_0, α) , \mathcal{E} is the set of straight lines that remain admissible for some duration, i.e., line L(t) s.t. $\overline{M}(t) \leq L(t) \leq \overline{H}(t)$ for $t \in [t_0, t_0 + \epsilon)$.
- ► Partition *E* into two:
 - \mathcal{E}_H : lines that intersect first $\bar{H}(t)$,
 - \mathcal{E}_M : lines that intersect first $\overline{M}(t)$.
- S_H and S_M are slopes of lines in \mathcal{E}_H and \mathcal{E}_M .
- Define $\beta_0 \triangleq \inf S_H = \sup S_M$
- ▶ β_0 : optimal slope, L_0 : optimal line

Constructing $E^{opt}(t)$

Let $t_0 = 0$ in the first iteration.

1. Obtain β_0 and L_0

2. Obtain the first instance t_1 s.t. (a) $L_0(t_1) = \overline{M}(t_1)$, or, (b) $L_0(t_1) = \overline{H}(t_1)$ or $L_0(t_1) = \overline{H}(t_1^-)$. Set $E^{opt}(t) = L_0(t)$, $t \in (t_0, t_1]$.

3. Terminate if $t_1 = T$. If not, start with $(t_1, E^{opt}(t_1))$ as starting point.

Algorithmic Construction

- 1. Packetized energy arrivals
- 2. N energy packets H_0, \ldots, H_{N-1} at times t_0, \ldots, t_{N-1}
- 3. \tilde{H}_i : total energy harvested just before t_i

Algorithmic Construction

- 1. Packetized energy arrivals
- 2. N energy packets H_0, \ldots, H_{N-1} at times t_0, \ldots, t_{N-1}
- 3. \tilde{H}_i : total energy harvested just before t_i
- 4. Starting t = 0, consider line segments from (0,0) to (t_i, \tilde{H}_i)
- 5. Choose the one with minimum slope
- 6. First transmission power: min_i $\frac{\tilde{H}_i}{t_i}$
- 7. Continue recursively

Joint Energy and Data Arrival

- 1. Both energy and data arrive in packets (Yang&Ulukus'12)
- 2. Both energy and data causality constraints
- 3. Assume unlimited battery
- 4. Minimize transmission time, or maximize remaining battery by a deadline

Enter Fading

- ▶ Channel gain (ϕ) changes over energy harvesting epochs
- Rate-power function: $r(t) = \log (1 + \phi(t)P(t))$
- Maximize transmitted data by T
- ► Offline optimization: channel states are known in advance

Example

- Battery operated model: $\bar{H}(t) = \bar{H}(0) = 2H$
- Two epochs of equal length
- First epoch has better channel: $\phi_1 > \phi_2$
- ► Problem: power allocation over parallel Gaussian channels
- Solution: Waterfilling

Energy Harvesting

- Waterfilling allocates more than half to first epoch
- ► What if that much energy is not yet available?

Limited Battery Capacity emax

- ▶ Waterfilling solution ignores the finite SE capacity *e_{max}*
- Assume: $\phi_2 > \phi_1$
- We can allocate at most e_{max} to the second epoch

Max Throughput over a Fading Channel

- ► N epochs
- Channel gains: ϕ_1, \ldots, ϕ_N
- Durations: τ_1, \ldots, τ_N , where $\tau_i = t_i t_{i-1}$
- Transmission power in each epoch: p_i

A less intuitive formulation

$$\max_{p_i} \sum_{i=1}^{N} \frac{\tau_i}{2} \log(1 + \phi_i p_i)$$
s.t.
$$\sum_{j=1}^{i} \tau_j p_j \leq \sum_{j=1}^{i} H_{j-1}, i = 1, ..., N,$$

$$\sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \tau_j p_j \leq e_{max}, i = 1, ..., N,$$

$$0 \leq p_i, \quad i = 1, ..., N.$$

Offline framework

A less intuitive formulation

$$\begin{array}{ll} \max_{p_i} & \sum_{i=1}^{N} \frac{\tau_i}{2} \log(1 + \phi_i p_i) \\ \text{s.t.} & \sum_{j=1}^{i} \tau_j p_j \leq \sum_{j=1}^{i} H_{j-1}, i = 1, ..., N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \tau_j p_j \leq e_{max}, i = 1, ..., N, \\ & 0 \leq p_i, \quad i = 1, ..., N. \end{array}$$

Convex optimization problem!

$$\mathcal{L} = \sum_{i=1}^{N} \frac{\tau_i}{2} \log(1 + \phi_i p_i) - \sum_{i=1}^{N} \lambda_i \left(\sum_{j=1}^{i} \tau_j p_j - \sum_{j=1}^{i} H_{j-1} \right) \\ - \sum_{i=1}^{N} \mu_i \left(\sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \tau_j p_j - e_{max} \right) + \sum_{i=1}^{N} \eta_i p_i$$

$$\mathcal{L} = \sum_{i=1}^{N} \frac{\tau_i}{2} \log(1 + \phi_i p_i) - \sum_{i=1}^{N} \lambda_i \left(\sum_{j=1}^{i} \tau_j p_j - \sum_{j=1}^{i} H_{j-1} \right) \\ - \sum_{i=1}^{N} \mu_i \left(\sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \tau_j p_j - e_{max} \right) + \sum_{i=1}^{N} \eta_i p_i$$

Complementary slackness conditions:

$$\lambda_i \left(\sum_{j=1}^i \tau_j p_j - \sum_{j=1}^i H_{j-1} \right) = 0, \forall i$$
$$\mu_i \left(\sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^i \tau_j p_j - e_{max} \right) = 0, \forall i$$
$$\eta_i p_i = 0, \forall i$$

Offline framework

Optimal power allocation:

$$p_j^* = \left[v_j - \frac{1}{\phi_j} \right]^+$$
$$v_j = \frac{1}{\sum_{i=j}^N \lambda_i - \sum_{i=j}^N \mu_i}.$$

Optimal power allocation:

$$p_j^* = \left[\upsilon_j - \frac{1}{\phi_j} \right]^+$$
$$\upsilon_j = \frac{1}{\sum_{i=j}^N \lambda_i - \sum_{i=j}^N \mu_i}.$$

If
$$e_{max} = \infty$$
:

•
$$\mu_j = 0, \forall j$$

- Since $\lambda_j \geq 0$, we have $v_{i+1} \geq v_i$
- Optimal water level is monotonically increasing!
- If ϕ_i is constant, optimal power is monotonically increasing

Directional Waterfilling

Directional Waterfilling

 $e_{max} = \infty$

Directional Waterfilling

 e_{max} is finite

Directional Waterfilling vs. Shortest Path

Processing Energy Costs

- Processing circuitry consumes energy:
 - ► Static energy drawn by the transmitter,
 - Energy consumed for coding/signal processing (A/D conversion, filters, mixers, etc.)
 - ► Also: protocol overhead, power amplifier inefficiencies
- ► For sensors, even the startup energy of the transceiver may exceed transmission energy

Processing Energy Costs

- ϵ joules per unit time: only when transmitting
- Discrete events: $t_0 = 0 < t_1 < \cdots < t_{N-1} < T$
- Duration of epoch *i*: $\tau_i \triangleq t_i t_{i-1}$
- Energy harvest at t_i : H_i
- Channel state in epoch *i*: ϕ_i
- ► Battery capacity: *e_{max}*
- Rate-power function: $\frac{1}{2}\log(1+\phi(t)p(t))$
► Transmission power in each epoch: *p_i*

- ► Transmission power in each epoch: *p_i*
- Transmission time in each epoch: θ_i

- ► Transmission power in each epoch: *p_i*
- Transmission time in each epoch: θ_i

$$\begin{array}{ll} \max_{p_i,\Theta_i} & \sum_{i=1}^N \frac{\Theta_i}{2} \log(1+\phi_i p_i) \\ \text{s.t.} & 0 \leq \sum_{j=1}^i \left(H_{j-1} - \Theta_j(p_j+\epsilon)\right), i=1,...,N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^i \Theta_j(p_j+\epsilon) \leq e_{max}, i=1,...,N, \\ & 0 \leq \Theta_i \leq \tau_i, \quad \text{and} \quad 0 \leq p_i, \quad i=1,...,N. \end{array}$$

- ► Transmission power in each epoch: *p_i*
- Transmission time in each epoch: θ_i

$$\begin{array}{ll} \max_{p_i,\Theta_i} & \sum_{i=1}^N \frac{\Theta_i}{2} \log(1+\phi_i p_i) \\ \text{s.t.} & 0 \leq \sum_{j=1}^i \left(H_{j-1} - \Theta_j(p_j+\epsilon)\right), i=1,...,N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^i \Theta_j(p_j+\epsilon) \leq e_{\max}, i=1,...,N, \\ & 0 \leq \Theta_i \leq \tau_i, \quad \text{and} \quad 0 \leq p_i, \quad i=1,...,N. \end{array}$$

Non-convex optimization

Offline framework

• $\alpha_i \triangleq \Theta_i p_i$: energy consumed by power amplifier in epoch *i*

• $\alpha_i \triangleq \Theta_i p_i$: energy consumed by power amplifier in epoch *i*

$$\begin{array}{ll} \max_{\alpha_i,\Theta_i} & \sum_{i=1}^{N} \frac{\Theta_i}{2} \log \left(1 + \frac{\phi_i \alpha_i}{\Theta_i} \right) \\ \text{s.t.} & 0 \leq \sum_{j=1}^{i} \left(H_{j-1} - \alpha_j - \epsilon \Theta_j \right), \quad i = 1, ..., N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \left(\alpha_j + \epsilon \Theta_j \right) \leq e_{\max}, i = 1, ..., N, \\ & 0 \leq \Theta_i \leq \tau_i, \quad \text{and} \quad 0 \leq \alpha_i, \quad i = 1, ..., N. \end{array}$$

• $\alpha_i \triangleq \Theta_i p_i$: energy consumed by power amplifier in epoch *i*

$$\begin{aligned} \max_{\alpha_i,\Theta_i} & \sum_{i=1}^{N} \frac{\Theta_i}{2} \log \left(1 + \frac{\phi_i \alpha_i}{\Theta_i} \right) \\ \text{s.t.} & 0 \leq \sum_{j=1}^{i} \left(H_{j-1} - \alpha_j - \epsilon \Theta_j \right), \quad i = 1, ..., N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \left(\alpha_j + \epsilon \Theta_j \right) \leq e_{\max}, i = 1, ..., N, \\ & 0 \leq \Theta_i \leq \tau_i, \quad \text{and} \quad 0 \leq \alpha_i, \quad i = 1, ..., N. \end{aligned}$$

- $\frac{\Theta_i}{2} \log(1 + \frac{\phi_i \alpha_i}{\Theta_i})$: perspective of $\frac{1}{2} \log(1 + \phi_i \alpha_i)$
- Strictly concave function
- Perspective operation preserves concavity

• $\alpha_i \triangleq \Theta_i p_i$: energy consumed by power amplifier in epoch *i*

$$\begin{array}{ll} \max_{\alpha_i,\Theta_i} & \sum_{i=1}^{N} \frac{\Theta_i}{2} \log \left(1 + \frac{\phi_i \alpha_i}{\Theta_i} \right) \\ \text{s.t.} & 0 \leq \sum_{j=1}^{i} \left(H_{j-1} - \alpha_j - \epsilon \Theta_j \right), \quad i = 1, ..., N, \\ & \sum_{j=1}^{i+1} H_{j-1} - \sum_{j=1}^{i} \left(\alpha_j + \epsilon \Theta_j \right) \leq e_{\max}, i = 1, ..., N, \\ & 0 \leq \Theta_i \leq \tau_i, \quad \text{and} \quad 0 \leq \alpha_i, \quad i = 1, ..., N. \end{array}$$

- $\frac{\Theta_i}{2} \log(1 + \frac{\phi_i \alpha_i}{\Theta_i})$: perspective of $\frac{1}{2} \log(1 + \phi_i \alpha_i)$
- Strictly concave function
- Perspective operation preserves concavity
- Convex optimization problem

Offline framework

Optimal Solution

• Each epoch has a threshold value: v_i^*

Optimal Solution

- ► Glue Pouring
- ► Sleep periods

Optimal Solution

Effect of Processing Energy Cost

Figure: processing cost = 1 μW

Offline framework

Future Directions

- More realistic models for processing cost: rate/bandwidth dependence
- Cost for memory
- Cost of sleep/wake cycles
- Battery level dependent sleep/wake optimization

Offline framework - Conclusions

- ► Offline optimization: all processes are known in advance
- Deterministic optimization problem
- ► A general upper bound on the performance
- Provides heuristics, general principles
- Studied progressively more realistic models
- Many more open problems

Offline framework - References

D. Gunduz et al., Designing intelligent energy harvesting communication systems, IEEE Comms. Magazine, Jan. 2014.

J. Yang and S. Ulukus, Optimal Packet Scheduling in an Energy Harvesting Communication System, IEEE Trans. Comms., Jan. 2012.

B. Devillers and D. Gunduz, A general framework for the optimization of energy harvesting communication systems with battery imperfections, Journal of Communications and Networks, Apr. 2012.

Ho and Zhang, Optimal energy allocation for wireless communications with energy harvesting constraints, IEEE Trans. Signal Proc., Sep. 2012

K. Tutuncuoglu and A. Yener, Optimum Transmission Policies for Battery Limited Energy Harvesting Nodes, IEEE Trans. Wireless Comms., Mar. 2012.

D. Gunduz and B. Devillers, Two-hop communication with energy harvesting, IEEE CAMSAP, Dec. 2011.

Offline framework - References

O. Orhan et al., Energy harvesting broadband communication systems with processing energy cost, IEEE Trans. Wireless Comms., Nov. 2014.

O. Ozel et al., Transmission with Energy Harvesting Nodes in Fading Wireless Channels: Optimal Policies, IEEE JSAC, Sep. 2011.

J. Yang et al., Broadcasting with an Energy Harvesting Rechargeable Transmitter, IEEE Trans. Wireless Comms., Feb. 2012.

R. Gangula et al., Optimization of energy harvesting MISO communication channels, IEEE JSAC, Mar. 2015.

O. Orhan et al., Source-channel coding under energy, delay and buffer constraints, IEEE Trans. Wireless Comms., Jul. 2015.

Table of Contents

1. Introduction

2. Offline optimization framework

3. Online optimization framework

4. Learning theoretic framework

5. Conclusions

Setting

- H(t) and I(t) are not known or accurately predictable
- More appropriate to model H(t) and I(t) as random processes
- μP must make decisions in online fashion
- ► Knowledge of past values of H(t) and I(t) and statistical description of future values
- ► Goal: optimization of expected outcome of decisions

Tools

- ► Markov decision processes: discrete-time stochastic control
- ► Policy: a set of decision rules based on system state
- Can be solved numerically with well known algorithms (linear programming, value iteration, policy iteration)
- ► But: complexity explodes with size of state space, no insight!
- We can also use offline heuristics in online context: ignores statistics
- A good compromise: appropriately optimize simple "energy-balancing" policies

System Model

- ▶ Slotted-time: slot k is interval $[k\tau, (k+1)\tau)$, $k \in \mathbb{Z}^+$, $\tau > 0$
- ► Time k: new data packet of importance $V_k \ge 0$; $\{V_k\}$ are iid.
- TX: reward V_k ; consume one energy quantum
- ► DROP: no reward; no energy consumed

System Model

- ▶ EH process: H_k iid Bernoulli with mean $\beta \in (0, 1)$
- Energy level evolution:

$$S_{k+1} = \min \left\{ S_k - Q_k + H_k, e_{\max} \right\}$$

• Transmit:
$$Q_k = 1$$
; drop: $Q_k = 0$

Online framework

Why is this scenario interesting?

General

- Temperature sensor: importance \leftrightarrow temperature
- Relay: importance \leftrightarrow priority
- \blacktriangleright Rate adaptation to fading: importance \leftrightarrow achievable rate

Representative

- Intermittence of harvested energy
- Basic energy management question
- Each slot corresponds to one cycle

System state and policy definition

- ▶ System state at time k: $(S_k, V_k) \in S \times \mathbb{R}^+$, where $S = \{0, \dots, e_{\max}\}$ is energy level set
- Energy outage: $S_k = 0$
- ▶ Energy overflow: $(S_k = e_{\max}) \cap (H_k = 1) \cap (Q_k = 0)$
- Policy μ determines $Q_k \in \{0, 1\}$
- ▶ µ(1; s, v): prob of TX
- $\mu(0; s, v) = 1 \mu(1; s, v)$: prob of DROP
- Formally: μ probability measure on action space {0,1} parametrized by state (S_k, V_k)

Optimization problem

Long-term average reward per slot

$$G(\mu, s_0, v_0) = \lim_{K \to \infty} \inf \frac{1}{K} \mathbb{E} \left[\sum_{k=0}^{K-1} Q_k V_k \middle| S_0 = s_0, V_0 = v_0 \right]$$

Find optimal policy

$$\mu^* = \arg \max_{\mu} G(\mu, s_0, v_0)$$

Online framework

Threshold policies

 $\blacktriangleright \ \mu^*$ has a threshold structure

$$\mu^*(1;s,v) = \left\{egin{array}{cc} 1 & v \geq v_{ ext{th}}(s) \ 0 & v < v_{ ext{th}}(s) \end{array}
ight.$$

Average TX prob

$$\eta(s) = \int_{\mathsf{v}_{\mathrm{th}}(s)}^{+\infty} f_V(\nu) \, \mathrm{d}\nu = \bar{F}_V(\mathsf{v}_{\mathrm{th}}(s))$$

• Average reward = $g(\eta(s))$

$$g(x) = \int_{ar{F}_V^{-1}(x)}^{+\infty}
u \ f_V(
u) \ \mathrm{d}
u, \ x \in [0,1]$$

• g(x) is strictly increasing and concave

Admissible policies

• $\mu \leftrightarrow v_{\text{th}}(\cdot) \leftrightarrow \eta(\cdot)$

- Transition probs of Markov chain $\{S_k\}$ depend only on η
- Admissible policy: unique steady-state distribution

$$\pi_\eta(s), \ s \in \mathcal{S}$$

• For admissible policy η , the long-term reward is

$$G(\eta) = \sum_{s=0}^{e_{\max}} \pi_{\eta}(s) g(\eta(s))$$

Markov decision process

Optimization problem becomes

$$\eta^* = rg \max_\eta {\sf G}(\eta)$$

- (S_k, V_k, Q_k) is a Markov Decision Process (MDP)
- Optimal policy can be easily evaluated numerically
- We seek properties of the optimal policy
- Approach: evaluate analytically $\pi_{\eta}(s)$ (and $G(\eta)$)

A bound

► By Jensen's inequality

$$G(\eta) = \sum_{s=0}^{e_{\max}} \pi_{\eta}(s) g(\eta(s)) < g\left(\sum_{s=0}^{e_{\max}} \pi_{\eta}(s) \eta(s)\right)$$

In addition

$$\sum_{s=0}^{e_{\max}} \pi_{\eta}(s)\eta(s) \leq \beta$$

Therefore

$${\mathcal G}(\eta) < g\left(\sum_{s=0}^{{\mathsf e}_{\max}} \pi_\eta(s)\eta(s)
ight) \le g(eta)$$

▶ Bound achievable by Balanced Policy for $e_{\max} \rightarrow \infty$

Example: $e_{\text{max}} = 1$

• $\eta^*(1)$ is the unique solution of $\partial G(\eta)/\partial \eta(1) = 0$

Online framework

Properties of optimal policy: $e_{\text{max}} > 1$ [MichelTA12]

- $\eta^*(s)$ is strictly increasing
- ► $\eta^*(s) \in (\eta_L, \eta_U)$, $\forall s \in S \setminus \{0\}$
- $\eta_L \in (0, \beta), \ \eta_U \in (\beta, 1)$ solve

$$egin{aligned} g(\eta_L) + \overline{\eta_L}g'(\eta_L) &= rac{g(eta)}{eta} \ g(\eta_U) - \eta_Ug'(\eta_U) &= g(eta) \end{aligned}$$

Interpretation

- The more energy available in the battery, the larger the incentive to transmit
- η_L and η_U consequence of concavity of $g(\eta)$
- \blacktriangleright If η is too low, the policy is too conservative
- If η is too high, returns are diminishing

Example: rate adaptation for Rayleigh fading

$$egin{aligned} V_k &= \ln(1+\mathrm{SNR}H_k) \ g(\eta(s)) &= \int_{h_{\mathrm{th}}(s)}^{+\infty} \ln(1+\mathrm{SNR}h) \, \mathrm{e}^{-h} \mathrm{d}h \ \eta(s) &= \int_{h_{\mathrm{th}}(s)}^{+\infty} \mathrm{e}^{-h} \, \mathrm{d}h = \mathrm{e}^{-h_{\mathrm{th}}(s)} \end{aligned}$$

Policies

- ► Optimal Policy (OP): solved for numerically
- ▶ Balanced Policy (BP): $\eta(s) = \beta \forall s \in S \{0\}$
- Greedy Policy (GP): $\eta(s) = 1 \ \forall s \in S \{0\}$
- ► Low Complexity Policy (LCP): based on proved properties

Average transmission probability

LCP "follows" OP: conservative for small s, aggressive for large s $(\beta=0.1,\,{\rm SNR}=10\,{\rm dB},\,e_{\rm max}=25)$

Steady-state distribution

LCP and OP maintain energy level away from outage/overflow regions ($\beta=0.1,~{\rm SNR}=10~{\rm dB},~e_{\rm max}=10$)

Reward

LCP performs very close to optimal. BP asymptotically optimal $(\beta = 0.1, \ {\rm SNR} = 10 \, {\rm dB})$

Improvement over BP

Take-away points

► The reward of the BP is

$$G(\eta_{ ext{BP}}) = rac{1}{1+rac{areta}{e_{ ext{max}}}}g(eta)$$

- For $e_{
 m max}/ar{eta} \geq$ 3, $G(\eta_{
 m BP})/g(eta) \geq$ 0.75
- Roughly: if I can store enough energy for 3 TX pulses, a balanced policy performs very well
- Why: energy arrivals are iid! Outage and overflow occur, but not for prolonged periods.
- Insight from OP: increase (decrease) TX prob as stored energy level increases (decreases)

Online framework - References

Chaisson and Vairamohan, Estimating the SOC of a battery, IEEE Trans. on Control Systems Tech., 2005

Jaggi, Kar and Krishnamurthy, Rechargeable sensor activation under temporally correlated events, Springer WINET, 2009

Michelusi, Stamatiou and Zorzi, Transmission policies for EH sensors with time-correlated energy supply, IEEE Trans. on Comms, 2013

Sharma et al., Optimal energy management policies for EH sensor nodes, IEEE Trans. on Wireless, 2010

Srivastava and Koksal, Basic tradeoffs for energy management in rechargeable sensor networks, arXiv.org, 2013

P. Blasco and D. Gunduz, Multi-access communications with energy harvesting: A multi-armed bandit model and the optimality of the myopic policy, IEEE Journal on Selected Areas in Communications, Mar. 2015.

J. Gomez-Vilardebo and D. Gunduz, Competitive analysis of energy harvesting wireless communication systems, European Wireless (EW) Conference, May 2014.

Table of Contents

1. Introduction

2. Offline optimization framework

3. Online optimization framework

4. Learning theoretic framework

5. Conclusions

Energy sources are sporadic

- Energy sources are sporadic
- In many cases knowing energy arrivals in advance (offline optimization) not possible

- Energy sources are sporadic
- In many cases knowing energy arrivals in advance (offline optimization) not possible
- Even the statistics depend on sensor location, time of day or season

- Energy sources are sporadic
- In many cases knowing energy arrivals in advance (offline optimization) not possible
- Even the statistics depend on sensor location, time of day or season
- Online/offline require calibrating sensor operation before deployment

- Energy sources are sporadic
- In many cases knowing energy arrivals in advance (offline optimization) not possible
- Even the statistics depend on sensor location, time of day or season
- Online/offline require calibrating sensor operation before deployment
- Why not learn harvesting/ data arrival/ channel processes, and adapt accordingly?

System Model

- Point to point system
- ► Transmitter has a rechargeable battery of size *e_{max}*.
- H_t : harvested energy at timeslot t
- ► I_t: size of data packet arriving at timeslot t
- Channel state : ϕ_t
- Decision made at each timeslot: transmit or drop incoming packet

System Model

- ► Energy/ data arrivals and channel state Markov processes
- At each timeslot sensor dies with probability 1γ .
- Either transmit $(X_t = 1)$ or drop $(X_t = 0)$ a packet
 - No data buffer
 - (I_t, ϕ_t) pair requires E_t energy units
- Energy constraints:
 - Available energy is limited: $X_n E_t \leq S_t$.
 - Battery has finite capacity: $S_{t+1} = \min\{S_t X_t E_t + H_t, e_{max}\}$.

Objective: Maximize average total data within activation time:

$$\max_{\{X_i\}_{i=0}^{\infty}} \lim_{N \to \infty} E\left[\sum_{t=0}^{N} \gamma^t X_t I_t\right],$$

s.t. $S_{t+1} = \min\{S_t - X_t E_t + H_t, e_{max}\},$
 $X_t E_t \le S_t,$
 $X_t \in \{0, 1\}$

Optimization methods

	Assumptions	Solution methods
Offline	Non-causal knowledge	Branch and bound
Online	Causal knowledge of current values Statistical knowledge of the Markov processes	Dynamic Prog.
Learning	Infinite horizon optimization Causal knowledge of current values Feedback from the receiver (i.e., ACK) Infinite horizon optimization	Reinforcement Learn.

Learning Theoretic Optimization

We use Q-learning algorithm (a Reinforcement Learning technique):

- Q-learning by performing actions and observing their rewards arrives at an optimal policy which maximizes the expected discounted sum reward accumulated over time
- Q-learning assumes
 - State is known causally
 - ► The immediate reward value is known after taking an action
- ► Q-learning estimates iteratively the action-value function

Numerical Results - Parameters

- ▶ Two state EH and data arrival process: $I_t = \{1, 2\}$ and $H_t = \{0, 2\}$.
- Channel can be either in good or in bad state (i.e. the energy required to tx a packet is doubled in the bad state).
- ▶ p_H: prob. of harvesting 2 energy units in epoch n + 1 given that 2 energy are harvested in epoch n
- ► **Upperbound**: in the **LP-Offline** the transmitter can partially transmit packets and has non causal knowledge.
- ► Lowerbound: in the Greedy algorithm the transmitter transmits a packet whenever there is enough energy in the battery.

Q-learning convergence

Energy harvesting

Learning theoretic framework - Conclusions

- Learning theoretic framework: Appropriate for time-varying/unknown energy sources
- Sensor learns harvesting/data arrival/channel state parameters and adapts transmission policy
- Future directions:
 - Distributed learning for multi-user systems
 - ► Partially observable models/ Bandit problems

Learning theoretic framework - References

Blasco, Gündüz and Dohler, A learning theoretic approach to energy harvesting communication system optimization, IEEE Trans. Wireless Communications, April 2013

Prabuchandran, Meena and Bhatnagar, Q-Learning based energy management policies for a single sensor node with finite buffer, IEEE Wireless Communications Letters, February 2013

Tran-Thanh, Rogers and Jennings, Long-term information collection with energy harvesting wireless sensors: a multi-armed bandit based approach, Autonomous Agents and Multi-Agent Systems, September 2012

Roy, Liu and Lee, Reinforcement learning-based dynamic power management for energy harvesting wireless sensor network, Next-Generation Applied Intelligence, Springer Berlin / Heidelberg, Lecture Notes in Computer Science, 2009

Vigorito, Ganesan and Barto, Adaptive control of duty cycling in energy-harvesting wireless sensor networks, IEEE Conf. on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2007

Aprem, Murthy and Mehta, Transmit power control policies for energy harvesting sensors with retransmissions, IEEE Journal of Selected Topics in Signal Processing, 2013

Table of Contents

1. Introduction

2. Offline optimization framework

3. Online optimization framework

4. Learning theoretic framework

5. Conclusions

In summary

Offline approach

- ► Well predictable environments, performance upper bounds
- ► Tools: cumulative curves, convex optimization

Online approach

- Random (stationary) environments, design based on statistical information and knowledge of past values
- ► Tools: stochastic optimization, steady-state analysis

Learning-theoretic approach

- Unknown environments, very limited information on energy and data processes
- ► Tools: Reinforcement learning

What next?

EH networks

- ► Hard to study: we saw this even for simple cases
- Offline results for broadcast, multiple access, interference channels
- ► General networks? Local information?
- Characteristics of a multi-agent system
- ► Additional parameter: energy sharing/transfer, simultaneous transmission of energy and information
- Interesting resource allocation problems in many layers of the stack

Bridging theory and practice

- ► Measurement campaigns for EH models [Gorla11]
- Implementation/testing of energy management algorithms in prototypes: Columbia's EnHants project [Gorla11]
- Realistic models that "capture" key characteristics of underlying circuitry
- Realistic storage models: e.g., "degradation-aware" policies [Michelnf13]

MAC Protocols

- MAC protocols for wireless sensor networks typically designed for maximum network lifetime
- ► EH networks: not energy-limited
- ► Goal: energy neutral MAC protocol design

MAC Protocols

- MAC protocols for wireless sensor networks typically designed for maximum network lifetime
- ► EH networks: not energy-limited
- ► Goal: energy neutral MAC protocol design
- ► EnOcean Alliance: ALOHA-based
- ► Intel WISP: EPC Class-1 Generation-2 (similar to slotted ALOHA)
- ► : Need protocols adapted to EH sensors

MAC Protocols

- Energy sources are correlated: best-effort policies will lead to collisions
- ► Correlation in harvested energy can provide coordination
- ► EH processes can be asymmetrical over network
- ► Adapt ALOHA, framed-ALOHA, dynamic framed-ALOHA to EH networks [lannello12], [MichelCC13]

Standards and Market

- ► EnOcean Wireless Standard (ISO/IEC 14543-3-10): first standard optimized for ultra-low power and EH systems
- Standardization will aid EH market development: forecasted to 1894.87 million dollars by 2017*

^{*}Global Forecast and Analysis of EH Market (2012-2017), marketsandmarkets.com, August 2012

Closing remarks

- An exciting research field
- Many open questions at the intersection of algorithm, circuit and network design

THANK YOU!

Further References

[Gorla11] Gorlatova, Wallwater and Zussman, Networking low-power EH devices: measurements and algorithms, IEEE INFOCOM, 2011

[Michelnf13] Michelusi et al., Impact of battery degradation on optimal management policies of harvesting-based wireless devices, IEEE INFOCOM, 2013

[MichelCC13] Michelusi and Zorzi, Optimal random multiaccess in energy harvesting wireless sensor networks, IEEE ICC, 2013

[lannello12] lannello, Simeone and Spagnolini, Medium access control protocols for wireless sensor networks with energy harvesting, IEEE Trans. Communications, May 2012

Sharma, Mukherji and Joseph, Efficient energy management policies for networks with energy harvesting sensor nodes," Allerton Conference on Communication, Control, and Computing, 2008

Buettner et al., Demonstration: RFID sensor networks with the Intel WISP, 6th ACM Conference on Embedded Networked Sensor Systems (Sensys), 2008