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Multi-User Information Theory



Multi-User Channels

Multiple users add another dimension

Multi-user diversity, scheduling, . . .

Capacity cannot be characterized by a single number

Define a K -dimensional capacity region
Several optimization criteria are possible
“Fairness” between users

Different power constraints possible

e.g. in uplink K power constraints, in downlink only one
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The Broadcast Channel
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Capacity region for general case not known

Broadcast channel is memoryless iff p(y1, y2|x) =
∏n

i=1 p(y1i , y2i |xi )
The broadcast channel is said to be degraded iff

p(y1, y2|x) = p(y1|x)p(y2|y1)

i.e. p(y2|y1, x) = p(y2|y1) and x → y1 → y2 form a Markov chain.

The capacity region for the degraded BC is known
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The Gaussian Broadcast Channel

Definitions

x , y ∈ C, AWGN, wk ∼ CN (0,Nk), power gains |hk |2, power constraint∑K
k=1 Pk = P

channel gain to noise ratio (CNR): Tk ,
|hk |2
Nk

for simplicity, consider two-user channel
T1 ≥ T2, i.e. user 1 has better channel
CNRs of users can be ordered
⇒ degraded broadcast channel
Rate region is defined as the union of all achievable rates (independent
data)

CBC =
⋃

(R1,R2)

y1

w1

x

y2

w2

h1

h2
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The Gaussian Broadcast Channel

Corner points of rate region: all resources (bandwidth, time, power)

are allocated to one user: R
(c)
k = ld(1 + TkP)

Equal power time division: for
∑

k αk = 1, αk ≥ 0, we obtain a
straight line between corner points

Rk = αk ld(1 + TkP)

Variable-power time division: for
∑

k αkPk = P

Rk = αk ld(1 + TkPk)

Frequency division: with
∑

k βk = 1, βk ≥ 0

Rk = αk ld

(
1 + Tk

βkP

αk

)
by setting Pk = βk

αk
P, we see that the last two regions are identical
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The Gaussian Broadcast Channel

CDMA with non-orthogonal spreading codes, spreading gain G ,
without interference cancellation

R1 =
1

G
ld

(
1 +

α1PG

1/T1 + α2P

)
R2 =

1

G
ld

(
1 +

α2PG

1/T2 + α1P

) (1)

BC region: superposition coding with successive interference
cancellation:

R1 = ld (1 + T1α1P)

R2 = ld

(
1 +

α2P

1/T2 + α1P

)
(2)
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The Gaussian Broadcast Channel

Maximum sum rate

simple figure of merit for multi-user system

Rsum = max
R∈CBC

K∑
k=1

Rk = ld

(
1 + P max

k
Tk

)
(3)

is achieved at boundary point of best user
⇒ BC reduces to single-user system

Maximum symmetric rate

all users obtain the same rate

Rsym = max
R∈CBC,R=Rk

R (4)
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The Gaussian Broadcast Channel
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The Gaussian Broadcast Channel
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The Gaussian Broadcast Channel

Common data

Common data is sent to all users (broadcast)
Users receive data of all other users with worse channel
⇒ include common data in the stream for user with worst channel
Rate region with common data, sent to both users at rate R0:

R0 ≤ ld

(
1 +

α2P

1/T2 + α1P

)
R1 ≤ ld (1 + α1PT1)

R2 ≤ ld

(
1 +

α2P

1/T2 + α1P

)
− R0

(5)
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The Multiple Access Channel

Channel gain to noise ratio (CNR): Tk = |hk |2
N0

Power constraint per user: E[|xk |2] ≤ Pk , k = 1, . . . ,K

The capacity region for two users is a pentagon:

R1 ≤ I (X1;Y |X2)

R2 ≤ I (X2;Y |X1)

R1 + R2 ≤ I (X1X2|Y )

(6)

For Gaussian MAC:

R1 ≤ ld (1 + P1T1)

R2 ≤ ld (1 + P2T2)

R1 + R2 ≤ ld (1 + P1T1 + P2T2)

(7)

y

wx1

x2

h1

h2
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The Gaussian Multiple Access Channel

Point A:
R∗2 = ld (1 + T1P1 + T2P2)− ld (1 + T1P1) = ld

(
1 + T2P2

1+T1P1

)
decode user 2, treating signal from user 1 as interference, subtract
signal, then decode user 1 (successive decoding)

R
2

R
1( )22111ld PTPT ++( )111ld PT+

( )221ld PT+

*
2R

*
1R

B

AC
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The Gaussian Multiple Access Channel

The capacity region for K users is

CMAC =

{
R :
∑
k∈S

Rk ≤ ld

(
1 +

∑
k∈S

PkTk

)
, ∀S ⊂ {1, 2, . . . ,K}

}
(8)

The MAC region has K ! vertices in the positive orthant, all achievable
with successive decoding with one the K ! orderings.

The set of users {1, 2, . . . ,K} has 2K − 1 non-empty subsets, i.e.
there are 2K − 1 conditions on R

The sum rate is

Rsum = ld

(
1 +

K∑
k=1

PkTk

)
(9)
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The Gaussian Multiple Access Channel: 3 users

Capacity region is defined by
2K − 1 = 7 inequalities
3! = 6 vertices in R3

+ (not counting the ones on xi = 0)
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The Gaussian Multiple Access Channel

Suboptimum multiple-access schemes

Superposition coding without interference cancelation (differs only at
receiver from optimum scheme): The transmit signal of each user
appears as noise to all others.

Rk = ld

(
1 +

TkPk

1 +
∑
` 6=k T`P`

)
(10)

Orthogonal CDMA (including frequency and time division)
Allocate αk of available bandwidth (or time) to user k, received noise
power is then αkN0

Rk = αk ld

(
1 +

PkTk

αk

)
,

K∑
k=1

αk = 1, αk ≥ 0 (11)
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The Gaussian Multiple Access Channel
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The Gaussian Multiple Access Channel
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Sum Rate of Multiple Access Channel

Comparison for equal SNRs: T1P1 = T2P2 = · · · = TKPK = γ

1 Sum rate for optimal scheme (superposition coding with IC):

Rsum = ld (1 + Kγ)

rate grows without limit with number of users

2 Sum rate for superposition coding without IC

Rsum = K · ld
(

1 +
γ

1 + (K − 1)γ

)
→ ld(e) =

1

ln 2
= 1.442

for K →∞
is interference-limited
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Broadcast vs. Multiple Access Channel

Common: Optimum scheme is superposition coding with successive
interference cancellation

MAC, uplink

K ! decoding orderings, all
achieve optimum sum rate

BC, downlink

always decode weakest
user first

optimum sum rate is
achieved by transmitting
only to strongest user
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Cooperative Schemes



The Relay Channel

Relay channels are known to provide higher capacity than point to
point channels

The capacity of the relay channel is still unknown

The best known upper bound for the general relay channel is the
cut-set bound

Known capacity for the degraded relay channel

 

 

xx 
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 R

D
y
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Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 23 / 133



The Relay Channel
Definitions

Relay

Source Destination( , | , )p y y x x X

XY

YM M̂

1 The relay channel is defined by the input and output alphabets
X, X̃,Y, Ỹ and a collection of pmfs p(y , ỹ |x , x̃), one for each
(x , x̃) ∈ X× X̃

2 An (n, 2nR) code for a relay channel consists of
message set U = {1, 2, . . . , 2nR}
encoding function X : U → Xn

relay functions x̃i = fi (ỹ1, ỹ2, . . . , ỹi−1)
decoding function g : Y n → U

The channel is memoryless: yi , ỹi depend on previously transmitted
symbols only via xi , x̃i
Encoding in the relay is causal
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The Relay Channel

The joint distribution factors as

p(u, x, x̃, y, ỹ) = p(u) ·
n∏

i=1

p(xi |u) · p(x̃i |ỹ1, ỹ2, . . . , ỹi−1) · p(yi , ỹi |xi , x̃i )

Theorem

For any relay channel
(
X× X̃, p(y , ỹ |x , x̃),Y, Ỹ

)
, the capacity is bounded

above by

C ≤ sup min
p(x ,x̃)

{
I (X , X̃ ;Y ), I (X ;Y , Ỹ |X̃ )

}
(12)

Proof by max-flow min-cut theorem
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The Relay Channel

Definition

A relay channel is degraded iff

p(y , ỹ |x , x̃) = p(ỹ |x , x̃) · p(y |ỹ , x̃)

i.e. p(y |x , x̃ , ỹ) = p(y |x̃ , ỹ)

Theorem

The capacity of the degraded relay channel is

C = sup min
p(x ,x̃)

{
I (X , X̃ ;Y ), I (X ; Ỹ |X̃ )

}
(13)
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The Degraded Gaussian Relay Channel

We consider the physically degraded Gaussian relay channel, in which
y depends on x only via x̃ , ỹ .

The capacity of the general Gaussian relay channel is not known.

ỹ = x + w1,

y = ỹ + x̃ + w2,
where

w1 ∼ N (0,N1)

w2 ∼ N (0,N2)
and

1
n

∑n
i=1 x

2
i ≤ P1

1
n

∑n
i=1 x̃

2
i ≤ P2

(14)

y

w
1

x

w
2Relay

x

y%
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The Degraded Gaussian Relay Channel

Theorem

The capacity of the degraded Gaussian relay channel is

C = max min
0≤α≤1

{
Ca

(
P1 + P2 + 2

√
(1− α)P1P2

N1 + N2

)
,Ca

(
αP1

N1

)}
(15)

where Ca(x) , 1
2 ld(1 + x).

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 28 / 133



The Degraded Gaussian Relay Channel

1 Case P1
N1
≤ P2

N2
: Relay is “closer” to receiver

The capacity is determined by the source-relay link as Ca(P1/N1) with
α = 1. Channel appears to be noise free after relay.

The rate is increased from Ca

(
P1

N1+N2

)
to Ca

(
P1

N1

)
.

2 Case P1
N1
> P2

N2
: Relay is “closer” to sender

Capacity is Ca

(
α∗P1

N1

)
, where α∗ such that

Ca

(
P1 + P2 + 2

√
(1− α∗)P1P2

N1 + N2

)
= Ca

(
α∗P1

N1

)
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The Degraded Gaussian Relay Channel

Concept for achieving the capacity of the degraded Gaussian relay channel:
Block Markov coding

Define two codebooks with rates R and R0 < R.

First codebook C1 =
{
x(u), u = 1, . . . , 2nR

}
, power αP1

partition this codebook into 2nR0 cells of equal size

S
1

S
2

…
02nR

S

{ }1 (1), (2), , (2 )nR= x x xKC


Second codebook: C2 =
{
x̃(s), s = 1, . . . , 2nR0

}
, power (1− α)P1
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The Degraded Gaussian Relay Channel

Transmission is organized blockwise: in block i , the sender transmits
message ui , the relay decodes the message and supports the sender in
the next block.

2( )sx 3( )sx

)( 2ux )( 3ux)( 1ux





2( )sx 3( )sx 

1(1 )P− α

1Pα

2P

Message

Sender

Relay

u
1

u
2

u
3
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Protocol Strategies

1 Decode-and-Forward (DF)
the relay decodes the message transmitted by the source
the source uses block Markov encoding
In the next block, the relay and source transmit the message to the
destination

2 Compress-and-Forward(CF)
the relay compresses received symbol (does not decode), transmits to
destination
The destination uses the side information provided by the relay and the
original message from the source to decode the information.

3 Amplify-and-Forward(AF)
the relay sends a scaled version of previously received symbol
amplification is adjusted according to the relay and the source power
constraints

DF achieves the capacity of degraded relay channel
DF outperforms CF when relay is close to the source
CF outperforms DF when the relay is close to destination
CF always outperforms AF
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Coded Cooperation



Relay vs Cooperative Channel

 

 

xx 
 S

 R

D
y

 D

Relay channel

 

S1  

S2

 

 

y
D 

 

Cooperative channel

One of the main differences between relaying and user cooperation
relates to the different information data injected into the network:

Relaying: intermediate node has NO information of its own
User cooperation: users relay each other’s signals
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Coded Cooperation

Sends different portions of each user’s codewords through two (or
more) independent fading paths.

Each user tries to transmit incremental redundancy (IR)/additional
parity data for its partner,

otherwise reverts to non-cooperative mode.

Cooperation is managed automatically via code design (e.g. ERROR
CONTROL CODES)

No feedback is needed between cooperating users

Achieves diversity and coding gain
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Coded Cooperation

Half duplex assumption.

Distinguish two phases:
1 Broadcast(BC) mode: each user broadcast information to cooperatives

users and destination
2 Multiple access (MAC) mode: cooperative users sends parity data to

destination
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Coded Cooperation

Key characteristics:

Cooperation occurs through partition of a user’s codeword

Level of cooperation quantized in relation to the IR sent by each
partner

α ,
N1

N
=

R

R1
(16)

High degree of flexibility: varying the code rate can adjust to varying
channel conditions

Error detection is employed at the partner to avoid error propagation
(eg: Cyclic Redundancy Codes (CRC))

Similarities with ARQ principle.
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Coded Cooperation

Example of implementation using a Rate Compatible Punctured
Convolutional (RCPC) codes

Puncturing allows to vary cooperation level α

N1 own data

CRC

Viterbi

CC1

CC2

CRC
check

yes

no

Phase #1

Phase #2

own info. 
data

partner 
received 
signal

N2 own data

N2 partner 
data

Figure: User implementation block diagram
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Coded Cooperation

Coded information transmitted in each phase. Segmentation of
redundancy bits → PUNCTURING

CC

N coded bitsK bits

Puncturing
Buffer

N1

N2 redundancy bitsN coded bitsK bits N1 coded bits

N2 redundancy bits
R=K/N

USER 1

USER 2

CC
Puncturing

Buffer

R=K/N
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Cases of Coded Cooperation

In the second phase, users act independently of their own first data
block being correctly decoded or not.

We can distinguish between four scenarios based on decoding results
of the first transmission phase:

1 Both users are able to decode correctly each partner’s information
2 None of the users are able to decode correctly each partner’s

information
3 User ]2 decodes user’s ]1 information, but user ]1 fails
4 User ]1 decodes user’s ]2 information, but user ]2 fails

Cooperative overhead for the destination to know which case shall
decode: through signalling (additional bits second frame header) or
additional complexity at destination.
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Outage Analysis for Coded Cooperation

Derivation of Outage Probability [HunNos06]

Next we formulate the outage events for each case.

First, we establish the baseline for non-cooperative direct transmission
in quasi-static fading channel

Capacity
C (γ) = log2 (1 + γ)

Outage Probability
POUT = Pr {C (γ) < R}

As a function of the SNR:

POUT = Pr

{
γ < 2R − 1

}
=

∫ 2R−1

0

pγ(γ)dγ

N = N1 + N2 codeword length
α = N1/N portion of codeword transmitted in phase ]1
1− α portion of codeword transmitted in phase ]2
R code rate; R1 = R/α
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Outage Analysis for Coded Cooperation

Need the SNR distribution. For Rayleigh fading channels

f (γ) =
1

γ̄
exp

(
−γ
γ̄

)
where γ̄ is the average SNR

The outage probability,

POUT =

∫ 2R−1

0

1

γ̄
exp

(
−γ
γ̄

)
dγ = 1− exp

(
−2R − 1

γ̄

)
(17)
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Outage Analysis for Coded Cooperation
(1) Full cooperation

1 Case Ω = 1: Both users able to decode correctly

S1

S2

D

S1

S2

D

Phase #1 Phase #2

1
1c

1
1c

2
1c

2
1c

2
2c

1
2c

Phase ]1: correct decoding of user’s 1 data by user 2 and viceversa

C12 (γ12) > R1 ⇒ log2 (1 + γ12) >
R

α

C21 (γ21) > R1 ⇒ log2 (1 + γ21) >
R

α
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Outage Analysis for Coded Cooperation
(1) Full cooperation

S1

S2

D

S1

S2

D

Phase #1 Phase #2

1
1c

1
1c

2
1c

2
1c

2
2c

1
2c

Phase ]2:the two transmissions can be viewed as parallel conditional
Gaussian channels → capacities added

C1d (γ1d , γ2d |Ω = 1) = α log2 (1 + γ1d) + (1− α) log2 (1 + γ2d) < R

C2d (γ1d , γ2d |Ω = 1) = α log2 (1 + γ2d) + (1− α) log2 (1 + γ1d) < R
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Outage Probability for Coded Cooperation
Assignment

Sketch the derivation of the outage probability

1 Express outage cases as in Case Ω = 1 for the remaining cases

2 Apply the four cases are disjoint (assumption: SNRs γ12, γ21, γ1d , γ2d

are mutually independent)
3 Apply SNR distribution to express outage probabilities (integrals) with

integration regions

A ≡ {(γ1d , γ2d ) : (1 + γ1d )α (1 + γ2d )1−α < 2R}

and
B ≡ {(γ1d , γ2d ) : (1 + γ1d )α (1 + γ1d + γ2d )1−α < 2R}

4 Hint: for the calculation of integrals∫ ∫
A

1

γ̄1d
exp

(
−
γ1d

γ̄1d

)
1

γ̄2d
exp

(
−
γ2d

γ̄2d

)
dγ1ddγ2d
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Outage Probability for Coded Cooperation
Assignment

Express integration region A in terms of integration limits for each
variable γ1d , γ2d ,

A ≡ {(γ1d , γ2d ) : (1 + γ1d )α (1 + γ2d )1−α < 2R}

γ2d <
2R/(1−α)

(1+γ1d )α/(1−α) − 1 ≡ a

γ2d > 0

2R/(1−α)

(1 + γ1d )α/(1−α)
> 1

Then ∫ 2R/α−1

0

1

γ̄1d
exp

(
−
γ1d

γ̄1d

)(∫ a

0

1

γ̄2d
exp

(
−
γ2d

γ̄2d

)
dγ2d

)
dγ1d
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Outage Probability for Coded Cooperation
Solution

Outage probability for user 1

P
(1)
OUT = exp

(
1− 2R/α

γ̄21

)[
1− exp

(
1− 2R/α

γ̄1d

)
− exp

(
1− 2R/α

γ̄12

)
Ψ1(γ̄1d , γ̄2d ,R, α)

]

+

(
1− exp

(
1− 2R/α

γ̄21

))[
1− exp

(
1− 2R

γ̄1d

)
− exp

(
1− 2R/α

γ̄12

)
Ψ2(γ̄1d , γ̄2d ,R, α)

]
where

Ψ1(γ̄1d , γ̄2d ,R, α) =

∫ 2R/α−1

0

1

γ̄1d
exp

(
−
γ1d

γ̄1d
−

a

γ̄2d

)
dγ1d

and

a =
2R/(1−α)

(1 + γ1d )α/(1−α)
− 1

Ψ2(γ̄1d , γ̄2d ,R, α) =

∫ 2R−1

0

1

γ̄1d
exp

(
−
γ1d

γ̄1d
−

b

γ̄2d

)
dγ1d

and

b =
2R/(1−α)

(1 + γ1d )α/(1−α)
− 1− γ1d
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Outage Probability for Coded Cooperation

For the particular case of reciprocal inter-user channels γ12 = γ21,

P
(1)
OUT = exp

(
1− 2R/α

γ̄12

)[
1− exp

(
1− 2R/α

γ̄1d

)
−Ψ1(γ̄1d , γ̄2d ,R, α)

]
+

+

[
1− exp

(
1− 2R/α

γ̄12

)][
1− exp

(
1− 2R/α

γ̄1d

)]

Outage probability for coded cooperation depends on: mean SNR,
code rate and cooperation level α

Optimization of design parameter α is complex. May be obtained
through iteration.
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Asymptotic analysis - Diversity gain

Asymptotic analysis in the high SNR regime

The approach: re-parameterize the mean SNR (decouple user
transmit power from channel impairments)

γ̄T , user transmit power over receive noise power
λij , accounting for large scale effects (path loss and shadowing)

γ̄ij = γ̄Tλij for i , j = 1, 2, d

γ̄T →∞, diversity order → smallest exponent for 1
γ̄T

Sketch of derivation: Taylor series expansion of exponential terms
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Asymptotic analysis - Diversity gain

Asymptotic analysis in the high SNR regime

1 Independent inter-user channel

POUT =
1

γ̄2
T

((
2R/α − 1

)2

γ̄1d γ̄12
+

f (R, α)

γ̄1d γ̄2d

)
+O

(
1

γ̄3
T

)

2 Reciprocal inter-user channel, γ12 = γ21

POUT =
1

γ̄2
T

((
2R − 1

) (
2R/α − 1

)
γ̄1d γ̄12

+
f (R, α)

γ̄1d γ̄2d

)
+O

(
1

γ̄3
T

)

f (R, α) =

{ (
α

1−2α

)
2R/α −

(
1−α

1−2α

)
2R/(1−α) + 1 α 6= 1

2

R · 22R+1 · ln 2− 22R + 1 α = 1
2

Coded cooperation achieves full diversity(=2 in the example)
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Asymptotic analysis - Diversity gain

Extension to multiple partners (n > 2), with protocol

1 user i transmits, all the other users listen

2 only those users who correctly decode user i ’s signal send extra
information about user i ’s frame to destination

Has also been analyzed and full diversity achievement demonstrated
[HunSan06]

γ̄T →∞ : POUT ∝ O(
1

γ̄nT
)

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 51 / 133



Performance of Coded Cooperation

Example

Rate R=1/2

Assumes inter-user links have the same average channel quality
(γ̄12 = γ̄21) and considers the case where the uplink mean SNR is

equal for both users (γ̄1d = γ̄2d) ⇒ P
(1)
OUT = P

(2)
OUT

Performance features:

Cooperation improves performance even for poor inter-user link
quality

When direct link and inter-user link exhibit the same channel quality
cooperation brings up most of the achievable gains

When inter-user channel quality increases over direct link, offers small
additional improvement (in the limit, γ̄12 →∞, ≈ 2dB )

Reciprocal inter-user channel → slightly better performance than
independent channels.
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Performance of Coded Cooperation

Source c©[HunSan06]
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Performance of Coded Cooperation

Example

This case considers the scenario where uplink channel quality between cooperative
users is different, e.g γ̄1d = γ̄2d + 10dB (R=1/2, γ̄12 = γ̄21)

Performance results:

As expected user 2 improves its performance over non-cooperative transmission

but so does user 1 besides the poorer quality of its partner’s link.

Source c©[HunSan06]
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Distributed Coding Schemes



Distributed Coding Schemes

Code examples

1 Rate Compatible Punctured Convolutional (RCPC) code

2 Distributed Turbo Codes (DTC)

3 Distributed Turbo Codes with Soft Information Relaying (DTC-SIR)

4 Generalized Distributed Turbo Codes (GDTC)

5 Distributed Low Density Parity Check Codes (DLDPC)

6 Network Coding (multiuser multihop networks)
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Convolutional Codes

The RCPC codes used by [HunNos04] where not optimized for
cooperation.

Stefanov and Erkip [SteErk04] propose the design of channel codes
suitable for cooperative transmissions based on code design for block
fading channels. From the point of view of the destination the
channel follows a block fading model rather than slow/quasi-static
fading channel. However, the cooperative scenario introduces
additional constraints:

For cooperation to occur often: effective code R1 should be a good
code in quasi-static fading (N = N1 + N2)
But also the overall code R should be a good code for quasi-static
fading (partner unable to decode correctly ⇒ non cooperative mode)
and block fading (partner able to decode correctly)
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Convolutional Codes

An example

R = 1
2

CC1(15, 17)octal best code for inter-user channel

R = 1
4

CC(15, 17, 13, 17)octal good performance for quasi-static direct transmission
(no cooperation); diversity gain=2 and good coding gain in block fading channels.

+

D D D

+

+

CC (15,17,13,15)octal

c(1)

R=1/2

R=1/4

c(2)

c(3)

c(4)

CC1 (15,17)octal
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Distributed Turbo Codes

Encoding process takes place at each cooperative node
systematic

CRC

Viterbi

RSC1

∏ RSC2

∏ RSC2

CRC
check

yes

no

Phase #1

Phase #2

own info. 
data

partner 
received 
signal 
(systematic 
+ parity #1)

partner 
parity #2

parity #1

parity #2

Cooperative nodes and destination have the same interleaver

Each user transmit its partner’s parity bits in the second frame using all the
available power

Rate compatible punctured codes introduce flexibility in the level of
cooperation ⇒ turbo decoding required at the cooperative node

DTC also considered for the relay channel
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Distributed Turbo Codes

Decode and Forward approach:

Code: Repetition coding
Exploits receive diversity: maximum ratio combining at the receiver
Diversity gain

Distributed TC approach:

Code: TC based on recursive systematic convolutional codes (RSC)
Turbo principle at the receiver
Diversity and coding gain (In general diversity gain proportional to
number of cooperative nodes)
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Distributed Turbo Codes

Block diagram Decode and Forward approach:

RSC

hsr

Viterbi RSC+ +

M 
R 
C

+
Viterbi

hsd

hrdhard 
decisions 

nsr
nrd

nsd

Block diagram Distributed TC approach:

RSC

hsr

Viterbi RSC+ +

+
hsd

hrd

∏

Iterative 
decoder 
(APP)

hard 
decisions 

Analysis assume quasi-static Rayleigh fading channel . Each link has a
constant fading level during N symbols.
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hsr

Viterbi RSC+ +

M 
R 
C

+
Viterbi
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hrdhard 
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nsr
nrd

nsd

Block diagram Distributed TC approach:

RSC

hsr

Viterbi RSC+ +

+
hsd

hrd

∏

Iterative 
decoder 
(APP)

hard 
decisions 

Analysis assume quasi-static Rayleigh fading channel . Each link has a
constant fading level during N symbols.
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Iterative decoding of DTC

Decoder at destination → standard turbo decoder

Remark regarding complexity: constituent codes can be very simple
(few states RSC code). This is a property of Turbo Codes in general:
Turbo Codes perform better with relatively low complexity constituent
codes
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Iterative decoding of DTC

RSC1

RSC2

∏

+ APP1

APP2

∏

∏-1

( )(0) (1),sd sdy y

( )( )(0) (2),sd sdΠ y y

Y

Figure: Encoding/Decoding block diagram for conventional PCCC.
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Iterative decoding of DTC

RSC1

RSC2

∏

+ APP1

APP2

∏

∏-1

+

Viterbi

+

source

relay

destination

( )( 0 ) (1),sd sdy ysdY

(2)
rdy

( )(0)
sdΠ y

Figure: Encoding/Decoding block diagram distributed turbo code.
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Performance of DTC for the relay channel

An example (perfect source-to-relay channels assumed)

0 5 10 15 20 25

10
-2

10
-1

10
0

Eb /No (dB)

FE
R

RSC direct link =0, R=1/2
RSC relay with L=1, R=1/3
RSC relay with L=2, R=1/4
RSC relay with L=4, R=1/6
distributed pccc with L=1, R=1/3
distributed pccc with L=2, R=1/4
distributed pccc with L=4, R=1/6

Source c©[ValZha03]
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Distributed Turbo Codes with Soft Information

RSC1

+
kb

kckb
sdh

rdh

srh

Destination

Source

MOD

APP

Relay

 Soft 
estimation +

( ) ( ),s p
k kx x

( )ip
kx

bP
sry

sdy

rdy



Soft decisions at relay instead of hard decisions

Protocol known under Soft Information Relaying (SIR)

Scheme works with a posteriori probabilities (APP)

Achieves full diversity order (=N, number of cooperating nodes ), plus improves coding
gain
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Distributed Turbo Codes with Soft Information

Processing performed at the relay includes 3 main steps:

1 Calculation of APPs of the systematic data Pr {bk = a|y} , a ∈ {0, 1}

2 Calculation of APPs associated with the interleaved data
Pr

{
b
′
k = a|y

}
, a ∈ {0, 1} and Pr

{
c
′
k = a|y

}
, a ∈ {0, 1}

3 Calculation of parity symbols soft estimates of the interleaved data x̃
′
k
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Distributed Turbo Codes with Soft Information
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Distributed Turbo Codes with Soft Information

1 Calculation of the APPs for the systematic data as in
conventional turbo decoding (BCJR algorithm)

Pb : Pr {bk = a|ysr} , k = 1, . . . ,K a = 0, 1

ysr is the received signal sequence at the relay

Pr {bk = a|ysr} = η

m,m′=MS−1∑
m,m′=0;bk=a

αk−1(m′)βk(m)γk(m,m′)

η normalization factor such that∑
a

Pr {bk = a|ysr} = 1

αk(m′), βk(m), feedforward and feedback recursive variable

γk(m,m′) branch metric

γk(m,m′) = exp

(
−
∥∥ysr (k)−

√
Psrhsrx(k)

∥∥2

N0

)
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Distributed Turbo Codes with Soft Information

2 Calculation of the APPs for the interleaved data

RSC

kb

kckb MOD



( ) ( ),s p
k kx x

( )ip
kx

RSC
kc

MOD
kb

Figure: PCCC encoder

Vector b
′

denotes interleaved information bits.
Vector c

′
denotes coded bits (parity bits) associated to b

′
.

Assumed infinite length interleavers,Pb′ =
∏

(Pb)

Pb′ : Pr

{
b
′

k = a|ysr
}
, k = 1, . . . ,K a = 0, 1

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 69 / 133



Distributed Turbo Codes with Soft Information

2 Calculation of the APPs for the interleaved data cont.

( )ip
kx

sry
 |r k srP b a y

APP 

 |r k srP b a  y

APP estimates 
parity data

 | ,r k srP c a   by P

Soft parity 
symbols 

estimation
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Distributed Turbo Codes with Soft Information

2 Calculation of the APPs for the interleaved data cont.

Develop a recursive algorithm similar to BCJR that computes APP of
c
′

parity bits for the interleaved data

Pr

{
c
′
k = a|ysr ,Pb

′

}
=

∑
m∈U(c

′
k

=a)

Pr

{
b
′
k = w |ysr ,Pb

′ , Sk−1 = m
}
· Pr

{
Sk−1 = m|ysr ,Pb

′
}

=
∑

m∈U(c
′
k

=a)

Pr

{
b
′
k = w |ysr

}
· Pr

{
Sk−1 = m|ysr ,Pb

′
}

Pr
{
Sk = m|ysr ,Pb

′
}

=
∑
m′

Pr
{
Sk = m|Sk−1 = m′, ysr ,Pb

′
}
· Pr

{
Sk−1 = m′|ysr ,Pb

′
}

=
∑
m′

Pr
{
b(m,m′)|ysr

}
· Pr

{
Sk−1 = m′|ysr ,Pb

′
}

U(c
′
k = a) set of branches for which the output parity symbol is equal to a
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Distributed Turbo Codes with Soft Information

1S

2S

3S

1S

2S

3S

0S 0S0 / 00

1/11

0 / 00

1/10

0 / 01

1/10

0 / 01

1/11

Figure: Example 4-state trellis
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Distributed Turbo Codes with Soft Information

1S

2S

3S

1S

2S

3S

0S 0S0 / 00

1/11

0 / 00

1/10

0 / 01

1/10

0 / 01

1/11

Pr

{
c
′
k = a|ysr ,Pb

′

}
=

∑
m∈U(c

′
k

=a)

Pr

{
b
′
k = w |ysr

}
· Pr

{
Sk−1 = m|ysr ,Pb

′
}

Pr

{
c
′
k = 0|ysr , P

b
′

}
= Pr

{
b
′
k = 0|ysr

}
Pr

{
Sk−1 = S0|ysr , Pb

′
}

+ Pr

{
b
′
k = 0|ysr

}
Pr

{
Sk−1 = S1|ysr , Pb

′
}

+ Pr

{
b
′
k = 1|ysr

}
Pr

{
Sk−1 = S2|ysr , Pb

′
}

+ Pr

{
b
′
k = 1|ysr

}
Pr

{
Sk−1 = S3|ysr , Pb

′
}
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Distributed Turbo Codes with Soft Information

1S

2S

3S

1S

2S

3S

0S 0S0 / 00

1/11

0 / 00

1/10

0 / 01

1/10

0 / 01

1/11

Pr
{
Sk = m|ysr ,Pb

′
}

=
∑
m′

Pr
{
b(m,m′)|ysr

}
· Pr

{
Sk−1 = m′|ysr ,Pb

′
}

Pr

{
Sk = S2|ysr , Pb

′
}

= Pr

{
b
′
k = 1|ysr

}
Pr

{
Sk−1 = S0|ysr , Pb

′
}

+ Pr

{
b
′
k = 0|ysr

}
Pr

{
Sk−1 = S1|ysr , Pb

′
}

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 74 / 133



Distributed Turbo Codes with Soft Information

3 Calculation of soft estimates
Linear combination of APPs on parity bits
e.g BPSK 0→ 1, 1→ −1 the soft estimate is given by

x̃
(pi )
k = 1 · Pr

{
c
′

k = 0|Pb′

}
− 1 · Pr

{
c
′

k = 1|Pb′

}
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Performance of DTC with SIR

Example parameters: (Source [LiVuc05])

Quasi-static Rayleigh fading channel

BPSK modulation

Frame size 130 symbols

Code rate R = 1
2

Generator polynomials of component convolutional code (1, 5
7 )octal
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Performance example of DTC with SIR - BER

DTC-SIR Distributed Turbo Code with Soft Information Relaying
DTC Distributed Turbo Code
DTC-SIR Distributed Turbo Code with ARQ between source-relay (maximum number of retransmissions = 3)

4 8 12 16 20 24
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1.00E-01
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r R
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Figure: BER at source to relay channel reliability γsr = 10dB [LiVuc06]
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Performance example of DTC with SIR - BER

DTC-SIR Distributed Turbo Code with Soft Information Relaying
DTC Distributed Turbo Code
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Figure: BER at source to relay channel reliability γsr = 15dB [LiVuc06]
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Performance example of DTC with SIR - Throughput
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Figure: Throughput at source to relay channel reliability γsr = 10dB [LiVuc06]
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Distributed LDPC

Distributed Low Density Parity Check
Codes
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Distributed LDPC

Description of LDPC codes

Sparse graph codes

Parity check matrix of a rate 1/2 code

H < M × N >, N variable nodes, M check nodes

H =


1 1 0 1 0 0
1 1 1 0 0 1
0 0 1 0 1 0
1 0 1 1 1 1



n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

m = 1, N1={1,2,4}

m = 2, N2={1,2,3,6}

m = 3, N3={3,5}

m = 4, N4={1,3,4,5,6}

Figure: Bipartite graph
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Distributed LDPC
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Distributed LDPC - Decoding LDPC codes

Maximum-likelihood decoding ĉ = maxc∈C Pr[c|y,HcT = 0]

Sum-product algorithm approaches ML for graph with no cycles

Some definitions:

Nm , {n : Hmn = 1}
Nm\n , {n 6= m : Hmn = 1}
Mn , {m : Hmn = 1}
Mn\m , {m 6= n : Hmn = 1}
Row weight wr (m) = |Nm|, column weight wr (m) = |Mn|
Parity check syndrome sm =

∑N
n=1 Hmncn =

∑
n∈Nm

cn
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Distributed LDPC -Decoding LDPC codes

We define the following probabilities:

vn(b) = Pr[cn = b|y,Sn] pseudoposterior probability

vnm(b) = Pr[cn = b|y,Snm] message variable → check

wmn(b) = Pr[sm = 0|cn = b, y] message check → variable

pn(b) , Pr[cn = 0|y] = Pr[cn = 0|yn] channel input to each variable node

with b ∈ F2

the event Sn{sm = 0,∀m ∈Mn}
and the event Snm{s ′m = 0, ∀m′ ∈Mn\m}
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Distributed LDPC - Decoding LDPC codes

The algorithm can be simplified by defining the messages to be
passed as L-values:

Ln , ln
pn(0)

pn(1)

ṽnm , ln
vnm(0)

vnm(1)
variable → check node

w̃mn , ln
wmn(0)

wmn(1)
check → variable node
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Distributed LDPC - Decoding LDPC codes

The basic sum-product algorithm with L-values

Initialize
for n = 1, 2 . . . ,N do

for m ∈ Mn do
ṽnm = Ln

end for
end for
for i = 1, 2, . . . , imax do

check node update
for m = 1, 2, . . . ,M do

for n ∈ Nm do

w̃mn = 2 · atanh
(∏

n′∈Nm\n
tanh

ṽ
n′m

2

)
end for

end for
variable node update
for n = 1, 2, . . . ,N do

for m ∈ Mn do
ṽnm = Ln +

∑
m′∈Mn\m

w̃m′n
end for
ṽn = Ln +

∑
m∈Mn

w̃mn

ĉn = 1[ṽn < 0]
end for
if HĉT = 0 then

break
end if

end for

nmv

m

n

mnw

n = 1n = 2n = 3n = 4n = 5n = 6

m = 4, N4={1,3,4,5,6}

44v

14v

64v 54v
43w

m =4 m =3 m =2 m =1

n = 3, M3={2,3,4}

nL

34v

23w
33w
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Distributed LDPC

Design rules for LDPC codes

Density evolution

dv maximum number of edges connected to a variable node

dc maximum number of edges connected to a check node

dc=5

dv=3
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Distributed LDPC

LDPC code design rules

Code described in terms of Degree profiles:

λ(x) =
dv∑
i=2

λix
i−1 and ρ(x) =

dc∑
i=2

ρix
i−1

Almost all codes with the same profile have similar decoding
performance (in the limit of blocklength and infinite iterations)
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Distributed LDPC

LDPC code design rules

Decoding of LDPC codes by message passing algorithms ⇒ belief
propagation(sum-product algorithm)

Density evolution predicts the outcome of the message passing
decoding by tracking message probability densities over successive
iterations ⇒ discovers noise threshold (below threshold successful
decoding with high probability for a randomly chosen code with that
profile)

Use of density evolution to search for good codes
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Distributed LDPC

Chakrabarti et al. [ChaBay07] introduce Distributed LDPC codes
for the relay channel

Assume two-phase transmission:

S

R

D S

R

D

α 1-α

1sx 1dy
2dy2sx

1ry
2rx

BC mode MAC mode

What are the essential steps in building an optimum distributed
coding scheme?

Approach: Modify code design rules for LDPC, taking into account
design constraints derived from the cooperative scenario
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Distributed LDPC

Code design challenge for relay channel:

Joint optimization of multiple constituent LDPC code profiles

Observed that codebooks can be completely correlated r = 0 or
independent r = 1 without significant rate loss

Definition of correlation r : relays sends crd and the source
rcrd + (1− r)csd where crd , crd are (binary) codewords from
independent codebooks Crd and Csd , respectively

Relay code profile optimization, requires building two LDPC codes
that are both good single-user codes of rates Rsr and Rsd , such that
the bipartite graph of Csr is a subgraph of Csd
This translates into additional constraints on degree distributions for
the density evolution algorithm
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What’s next

We have seen that through proper code design distributed coding can
achieve both spatial diversity and coding gain

Most of the distributed coding schemes have been developed based
on conventional channel coding schemes (Turbo Codes, LDPC).

Detection errors at the relay/cooperative user do have impact on
performance

There is no accurate analytical representation to model decoding
errors

Optimum code design for cooperative channel still an open issue

Scalability to multicast multi-hop networks ⇒ Network Coding
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Coding at upper layers



Introduction to Network Coding

Motivation and definition

Rateless codes

Random coding and analysis
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Introduction to Network Coding

The basic idea

In an end-to-end network connection, some packets get lost for a
variety of reasons:

Errors from lower layers (typical in wireless, less in wired networks)
Buffer overflows
Congestion control mechanisms:”Random early detection” (RED)
selectively drops some packets to reduce TCP congestion window ...

We model lost packets as channel erasures
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Introduction to Network Coding

Channel erasures trigger packet retransmissions

We wish to find a mechanism that avoids the need for retransmissions

Reduce delay
Increase robustness
Reduce signaling overhead (acks/nacks)

We do so by including redundancy in the transmitted data, in a
distributed way, over the network
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The Broadcast/Multicast Problem

Server needs to transmit software update to multiple clients

Each terminal connected through independent erasure channel with
erasure probability ε

Throughput, 1 terminal:

η = P(Ē ) = 1− P(E ) = 1− ε

Throughput, N terminals :

η = P(Ē1)
⋂

P(Ē2)
⋂
. . .
⋂

P(ĒN) = (1− ε)N
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The Broadcast/Multicast Problem
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ε = 0.1%
ε = 1%

For a large number of clients, all packets need to be retransmitted
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Definition

A basic definition of network coding would be:

Encoding scheme for transmission over multiple network edges, where
intermediate nodes may perform some operations on the message
content

Network coding is performed at link, network, or upper layers,

It is performed over a binary field F2, or, in general Fq, q = 2m

The network coding channel is an erasure channel, representing packet
erasures due to errors in layers 1-3
Some assumptions made for physical layer coding do not hold (e.g.
packets do not arrive in a synchronous fashion)
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Classical scenarios

VSAT network(Two-Way Relay
Channel)

 

Butterfly network
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Rateless Codes

Rateless codes are upper layer codes for 1-hop broadcast scenario over
erasure channels (or multiple hops but no intermediate processing)
Example of 8-ary erasure channel

   
000 000 

1‐ε

001 001 
1‐ε

010 010 
1‐ε

011 011 
1‐ε

100 100 
1‐ε

101 101 
1‐ε

110 110 
1‐ε

111 111 
1‐ε

 ???

ε
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Rateless Codes

Sources for PHY layer errors: decoding failures, link adaptation
failures

Strong PHY layer code behaves close to Shannon limit: either no
errors or all bits in error

Errors easily detected by CRC or checksums, and packets dropped
At upper layers, link or end-to-end link may be seen as q-ary erasure
channel, where q = 2m alphabet size

Need for upper layer error correction
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How to deal with erasures

Conventionally

Use error control at link or transport layer based on retransmissions

Requires feedback channel and typically inefficient:

Transmit ack, Transmit nack, Selective repeat or go back N,
If ε is large → throughput is small

In principle, no need for retransmissions. Transmit at channel capacity
CRC = (1− ε)L (bits/L-bit packet) and use powerful erasure
correcting code
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How to deal with erasures

For example Reed-Solomon codes

Block code (N,K ), alphabet size q = 2l

Property: the original K source symbols can be recovered as long as
K out of the N transmitted symbols are received correctly

Are optimal, but only practical for small K , N, q

O(K (N − K )ldN)

Need to estimate ε to select the appropriate code rate R = K/N

However, erasure rate often unknown or different for different users in
a multicast
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How to deal with erasures

Alternative: rateless codes or Fountain Codes

Do not need to estimate the erasure rate

Code rate can be determined and adapted on the fly

Can potentially generate an unlimited number of encoded packets →
rate granularity almost continuous

Universal: nearly optimal for any erasure channel (does not depend on
the channel statistics)

Low encoding/decoding complexity

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 104 / 133



Fountain Codes

Encoding process

Break down information message into K blocks/packets

Transmit N > K encoded blocks

Fountain codes are characterized by the ability to produce a very large
number of encoded packets from data bits

Decoding process

Message can be decoded once K = K + ε packets have been received

The order of the received packets is not important

Code rate can be determined on the fly

Stop transmission when ACK from all receivers on full message

Data carousel (cyclic transmission of information, e.g. DVB)
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Linear Random Coding
Encoding

Consider an erasure channel over entire packets
Message broken into K packets: s1,s2,, sK

 

t1

 

s1 

1 

L

s2

L bit

t2 

L bits

 … 

ts 

… 

FILE 

s

tn 

sk …… 

… 

sK 

tN 

For each transmitted packet tn the encoder generates K random bits
{Gkn} ∈ {0, 1} and performs modulo-2 sum of data packets for which

{Gkn} = 1

tn =
K∑

k=1

skGkn

Each block of K bits {Gnk} ∈ {0, 1} constitutes a column of an
increasingly large generator matrix G < K × K >
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Linear Random Coding
Decoding

Successful decoding of original data packets depends on the number
of received encoded packets N

If N < K → cannot decode
If N ≥ K → can decode if G is invertible module-2

ŝk =
N∑

n=1

tnG
−1
nk
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Linear Random Coding
Decoding

The probability of correct decoding can be computed as the
probability that G is invertible

which is equivalent to the probability that each new column is linearly
independent with the preceding ones

Example: for K > 10

(1− 2−K )(1− 2−(K−1)) . . . (1− 2−1) = 0.289
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Linear Random Coding
Decoding

For N = K + ε > K with number of excess packets ε small the
probability of matrix G containing an invertible K × K matrix,
increases with ε as,

P , 1− δ(ε)

with
δ(ε) ≤ 2−ε

I.e., the number of required packets to have 1− δ probability of
success is approximately

K + ld
1

δ

The rate of Fountain Codes can be arbitrarily close to 1 for large K
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Linear Random Coding
Upper Bound Probability of decoding failure
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Linear Random Coding
Complexity

Encoding: O(K/2) packet operations (modulo2 additions) on average

Decoding:O(K 3 + K 2/2) matrix inversion and multiplication of coded
packets

Polynomial complexity is good compared to exponential complexity
(e.g. random FEC or Reed-Solomon)

Problem if we want high rates → K �
Solution

LT Codes (Luby)
goal: retain performance of linear random coding at reduced complexity
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LT Codes
Encoding

K source packets s1, s2 . . . , sK

1 Choose packet degree dn from a degree distribution
2 Choose at random dn distinct input packets from {sk} and set tn equal

to the bitwise modulo-2 packet addition

tn =
∑
k=1

dnsi∼U(1,K)
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LT Codes
Encoding

Encoding process defines a graph connecting source packets to
encoded packets with,

tn check nodes
sk variable nodes
If mean degree is � K the graph is sparse → code has a low density
generator matrix

Decoding: message passing

Message passing for erasure channels is simple: messages are either
completely certain or completely uncertain
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LT Codes
Decoding

Algorithm

1 Find check node tn connected to a single source packet sk
2 Set sk = tn
3 Add sk to all checks tn′ connected to sk , i.e., Gn′k = 1

4 Remove edges connected to source packet sk
5 Go back to Step 1 until all sk are decoded
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LT Codes
Example

sparse graph

100 

t1

s1 
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t2
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LT Codes
Example

1 degree-one check node
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LT Codes
Example

2 check-node update
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LT Codes
Example

3 remove edges
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LT Codes
Example

1 repeat the process: degree-one check node
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LT Codes
Example

2 repeat the process: check-node update
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LT Codes
Example

3 repeat the process: remove edges
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LT Codes
Remarks on design

LT codes carefully design the degree distribution
1 the decoding process does not get stuck
2 the average node degree is small (sparse graph)

Some packets must have high degree to ensure connectivity

Majority of packets must have low degree to ensure the graph is
sparse

Tool density evolution

Degree distribution robust soliton distribution

Decoding complexity grows as O(K lnK ) as opposed to
O(K 3 + K 2/2)
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Raptor Codes

One step further

Reduces both encoding and decoding to linear complexity

How: concatenation of outer code (e.g. irregular LDPC) with a
weakened LT code

LT code with very low average degree d̄ = 3
ensures the decoder does not get stuck
but a fraction of source packets are not connected to the graph →
erased
Erasures are dealt with by the outer code (LPDC)
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Applications

Storage

Better protection against catastrophic disk failures than typical disk
redundancy systems
Faster recovery in case of reading failures (no need to recover exactly
that lost packet)

Broadcast/Multicast

Avoid large amounts of retransmissions
Data carrousel approach:

users have opportunistic access to the channel and wish to download a
fixed amount of data (e.g. road traffic info)
Encode data using an FC so that all users can decode regardless of
when they connect to the channel

Wireless Sensor Networks

Rateless codes adapted to WSN
Main application: data dissemination
Combines FC with opportunistic listening
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Network Coding
Coding over a network

At the physical layer → link-level coding: combination of forward and
feedback error correction (FEC + ARQ )

At network level (end-to-end) → feedback encoding has prevailed so
far

Optimal in point-to-point links

Complications arise when applied end-to-end

Such feedback encoding mechanisms are difficult to implement as
they sometimes need to deal with other problems, mainly network
congestion (e.g. TCP congestion control mechanism)

Feedback encoding may be undesirable in terms of delay if the
end-to-end path is long

It may also be undesirable for multicast connections
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Network Coding
Random Linear Network Coding

Feedforward network encoding

Intermediate nodes store packets in memory

They retransmit a linear transformation of packets in memory

Properties:

Encoding performed at packet level
May approach capacity
Can be operated ratelessly
Polynomial time decoding (as in Fountain Codes)
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Network Coding
Revisit Butterfly Network

Network composed by one source, two
sinks, unit-capacity edges

Can route two packets a,b to two sinks
with time sharing

1 Time instant t1: sink 2 receives a and
b; sink 1 receives a

2 Time instant t2: sink 1 receives a and
b; sink 2 receives a

Multicast rate of 1.5 packets per use of
the network
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Network Coding
Revisit Butterfly Network

Network composed by one source, two
sinks, unit-capacity edges

Can route two packets a,b to two sinks
with time sharing

1 Time instant t1: sink 2 receives a and
b; sink 1 receives a

2 Time instant t2: sink 1 receives a and
b; sink 2 receives a

Multicast rate of 1.5 packets per use of
the network
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Network Coding
Revisit Butterfly Network

Network composed by one source, two
sinks, unit-capacity edges

Can route two packets a,b to two sinks
with network coding

1 Time instant t1: sink 2 receives a and
a⊕ b; sink 1 receives b, a⊕ b

2 Sink 1 receives b, can recover a from
a⊕ b: (a⊕ b)⊕ b = a

3 Sink 2 receives a, can recover b from
a⊕ b: (a⊕ b)⊕ a = b

Multicast rate of 2 packets per use of
the network

time instant t1

   

b

b

ab

a b 

a

a b 

a

a b 

a 

Monica Navarro (CTTC) Cooperation and Coding 9 - 13 Nov. 2015 128 / 133



Random Linear Network Coding
Encoding

Random linear network coding (distributed scheme) achieves multicast
capacity as long as the Galois Field order q is sufficiently large

Generates random linear combinations of incoming packets

uk ∈ FN
q , yn =

∑K
i=1 Gniui , Gni ∈ FN

q

yn innovative packets

gi = (G1i , . . . ,GNi ) are global encoding vectors
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Random Linear Network Coding
Decoding

Sink nodes perform Gaussian elimination on the set of global
encoding vectors of packets in its memory y1

...
yN

 =

 G11 . . . G1K
...

. . .
...

GN1 . . . GNK


 u1

...
uK


If matrix G has rank K , packets u1,u2,...,uK are recovered

Global encoding vectors must be known by receiver

It can be included in packet as side information (e.g. header)

Rate loss is minor for large packets
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Random Linear Network Coding
Local Encoding

Each arriving packet represents a linear constraint of the form

y = g [u1, . . . , uK ]

restricts each component of source vectors to (K − 1)-dimensional
subspace

Innovative packets , vector g outside subspace spanned by vectors g
of packets in buffer

Non-innovative packets , vector g lies inside that subspace

Non-innovative packets are not useful to produce linear combinations
of outgoing packets and can be discarded

This limits node buffering capability to K packets at most
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Random Linear Network Coding
Local Encoding

Non-innovative packets do not preclude correct decoding but are
useless, and their transmission should be avoided

Rate control

Transmission rate goes to zero if nodes continue to retransmit linear
combinations of packets in their buffer
Possible solution is to define generations of information packets, and
stop transmitting packets of one generation when first packet from new
generation arrives
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